# src/test_set.py import os import pandas as pd import yaml import numpy as np from datasets import load_dataset from config import ( TEST_SET_DATASET, SALT_DATASET, MAX_TEST_SAMPLES, HF_TOKEN, ALL_UG40_LANGUAGES, GOOGLE_SUPPORTED_LANGUAGES, EVALUATION_TRACKS, LANGUAGE_NAMES, ) import salt.dataset from src.utils import get_all_language_pairs from typing import Dict, List, Optional, Tuple # Local CSV filenames for persistence LOCAL_PUBLIC_CSV = "salt_test_set.csv" LOCAL_COMPLETE_CSV = "salt_complete_test_set.csv" def generate_test_set(max_samples_per_pair: int = MAX_TEST_SAMPLES) -> pd.DataFrame: """Generate test set from SALT dataset.""" print("🔬 Generating SALT test set...") try: # Build SALT dataset config dataset_config = f""" huggingface_load: path: {SALT_DATASET} name: text-all split: test source: type: text language: {ALL_UG40_LANGUAGES} target: type: text language: {ALL_UG40_LANGUAGES} allow_same_src_and_tgt_language: False """ config = yaml.safe_load(dataset_config) print("📥 Loading SALT dataset...") full_data = pd.DataFrame(salt.dataset.create(config)) print(f"📊 Loaded {len(full_data):,} samples from SALT dataset") test_samples = [] sample_id_counter = 1 # Generate samples for each language pair for src_lang in ALL_UG40_LANGUAGES: for tgt_lang in ALL_UG40_LANGUAGES: if src_lang == tgt_lang: continue # Filter for this language pair pair_data = full_data[ (full_data["source.language"] == src_lang) & (full_data["target.language"] == tgt_lang) ] if pair_data.empty: print(f"⚠️ No data found for {src_lang} → {tgt_lang}") continue # Sample data for this pair n_samples = min(len(pair_data), max_samples_per_pair) sampled = pair_data.sample(n=n_samples, random_state=42) print(f"✅ {src_lang} → {tgt_lang}: {len(sampled)} samples") for _, row in sampled.iterrows(): test_samples.append({ "sample_id": f"salt_{sample_id_counter:06d}", "source_text": row["source"], "target_text": row["target"], "source_language": src_lang, "target_language": tgt_lang, "domain": row.get("domain", "general"), "google_comparable": ( src_lang in GOOGLE_SUPPORTED_LANGUAGES and tgt_lang in GOOGLE_SUPPORTED_LANGUAGES ), }) sample_id_counter += 1 test_df = pd.DataFrame(test_samples) if test_df.empty: raise ValueError("No test samples generated - check SALT dataset availability") print(f"✅ Generated test set: {len(test_df):,} samples") return test_df except Exception as e: print(f"❌ Error generating test set: {e}") return pd.DataFrame(columns=[ "sample_id", "source_text", "target_text", "source_language", "target_language", "domain", "google_comparable" ]) def _generate_and_save_test_set() -> Tuple[pd.DataFrame, pd.DataFrame]: """Generate and save both public and complete versions of the test set.""" print("🔬 Generating and saving test sets...") full_df = generate_test_set() if full_df.empty: print("❌ Failed to generate test set") empty_public = pd.DataFrame(columns=[ "sample_id", "source_text", "source_language", "target_language", "domain", "google_comparable" ]) empty_complete = pd.DataFrame(columns=[ "sample_id", "source_text", "target_text", "source_language", "target_language", "domain", "google_comparable" ]) return empty_public, empty_complete # Public version (no target_text) public_df = full_df[[ "sample_id", "source_text", "source_language", "target_language", "domain", "google_comparable" ]].copy() # Save versions try: public_df.to_csv(LOCAL_PUBLIC_CSV, index=False) full_df.to_csv(LOCAL_COMPLETE_CSV, index=False) print(f"✅ Saved test sets: {LOCAL_PUBLIC_CSV}, {LOCAL_COMPLETE_CSV}") except Exception as e: print(f"⚠️ Error saving CSVs: {e}") return public_df, full_df def get_public_test_set() -> pd.DataFrame: """Load the public test set with enhanced fallback logic.""" # 1) Try HF Hub try: print("📥 Attempting to load test set from HF Hub...") ds = load_dataset(TEST_SET_DATASET, split="train", token=HF_TOKEN) df = ds.to_pandas() # Validate structure required_cols = ["sample_id", "source_text", "source_language", "target_language"] if all(col in df.columns for col in required_cols): print(f"✅ Loaded test set from HF Hub ({len(df):,} samples)") return df else: print("⚠️ HF Hub test set missing columns, regenerating...") except Exception as e: print(f"⚠️ HF Hub load failed: {e}") # 2) Try local CSV if os.path.exists(LOCAL_PUBLIC_CSV): try: df = pd.read_csv(LOCAL_PUBLIC_CSV) required_cols = ["sample_id", "source_text", "source_language", "target_language"] if all(col in df.columns for col in required_cols): print(f"✅ Loaded test set from local CSV ({len(df):,} samples)") return df else: print("⚠️ Local CSV has invalid structure, regenerating...") except Exception as e: print(f"⚠️ Failed to read local CSV: {e}") # 3) Regenerate & save print("🔄 Generating new test set...") public_df, _ = _generate_and_save_test_set() return public_df def get_complete_test_set() -> pd.DataFrame: """Load the complete test set with targets.""" # 1) Try HF Hub private try: print("📥 Attempting to load complete test set from HF Hub...") ds = load_dataset(TEST_SET_DATASET + "-private", split="train", token=HF_TOKEN) df = ds.to_pandas() required_cols = ["sample_id", "source_text", "target_text", "source_language", "target_language"] if all(col in df.columns for col in required_cols): print(f"✅ Loaded complete test set from HF Hub ({len(df):,} samples)") return df else: print("⚠️ HF Hub complete test set missing columns, regenerating...") except Exception as e: print(f"⚠️ HF Hub private load failed: {e}") # 2) Try local CSV if os.path.exists(LOCAL_COMPLETE_CSV): try: df = pd.read_csv(LOCAL_COMPLETE_CSV) required_cols = ["sample_id", "source_text", "target_text", "source_language", "target_language"] if all(col in df.columns for col in required_cols): print(f"✅ Loaded complete test set from local CSV ({len(df):,} samples)") return df else: print("⚠️ Local complete CSV has invalid structure, regenerating...") except Exception as e: print(f"⚠️ Failed to read local complete CSV: {e}") # 3) Regenerate & save print("🔄 Generating new complete test set...") _, complete_df = _generate_and_save_test_set() return complete_df def create_test_set_download() -> Tuple[str, Dict]: """Create test set download with comprehensive metadata.""" public_df = get_public_test_set() if public_df.empty: stats = { "total_samples": 0, "track_breakdown": {}, "languages": [], "language_pairs": 0, "google_comparable_samples": 0, } return LOCAL_PUBLIC_CSV, stats download_path = LOCAL_PUBLIC_CSV # Ensure the CSV is up-to-date try: public_df.to_csv(download_path, index=False) except Exception as e: print(f"⚠️ Error updating CSV: {e}") # Calculate comprehensive statistics try: # Basic statistics stats = { "total_samples": len(public_df), "languages": sorted(list(set(public_df["source_language"]).union(public_df["target_language"]))), "language_pairs": len(public_df.groupby(["source_language", "target_language"])), } # Track-specific breakdown track_breakdown = {} for track_name, track_config in EVALUATION_TRACKS.items(): track_languages = track_config["languages"] track_data = public_df[ (public_df["source_language"].isin(track_languages)) & (public_df["target_language"].isin(track_languages)) ] track_breakdown[track_name] = { "total_samples": len(track_data), "language_pairs": len(track_data.groupby(["source_language", "target_language"])), "languages": track_languages, } stats["track_breakdown"] = track_breakdown # Google-comparable statistics if "google_comparable" in public_df.columns: stats["google_comparable_samples"] = int(public_df["google_comparable"].sum()) else: stats["google_comparable_samples"] = 0 except Exception as e: print(f"⚠️ Error calculating stats: {e}") stats = { "total_samples": len(public_df), "track_breakdown": {}, "languages": [], "language_pairs": 0, "google_comparable_samples": 0, } return download_path, stats def get_track_test_set(track: str) -> pd.DataFrame: """Get test set filtered for a specific track.""" if track not in EVALUATION_TRACKS: print(f"❌ Unknown track: {track}") return pd.DataFrame() # Get main test set and filter public_df = get_public_test_set() if public_df.empty: return pd.DataFrame() track_languages = EVALUATION_TRACKS[track]["languages"] track_df = public_df[ (public_df["source_language"].isin(track_languages)) & (public_df["target_language"].isin(track_languages)) ] print(f"✅ Filtered {track} test set: {len(track_df):,} samples") return track_df def validate_test_set_integrity() -> Dict: """Validate test set integrity.""" try: public_df = get_public_test_set() complete_df = get_complete_test_set() if public_df.empty or complete_df.empty: return { "alignment_check": False, "total_samples": 0, "track_analysis": {}, "error": "Test sets are empty or could not be loaded", } public_ids = set(public_df["sample_id"]) private_ids = set(complete_df["sample_id"]) # Track-specific analysis track_analysis = {} for track_name, track_config in EVALUATION_TRACKS.items(): track_languages = track_config["languages"] # Analyze public set for this track track_public = public_df[ (public_df["source_language"].isin(track_languages)) & (public_df["target_language"].isin(track_languages)) ] # Analyze complete set for this track track_complete = complete_df[ (complete_df["source_language"].isin(track_languages)) & (complete_df["target_language"].isin(track_languages)) ] track_analysis[track_name] = { "public_samples": len(track_public), "complete_samples": len(track_complete), "alignment": len(track_public) == len(track_complete), "languages": track_languages, } return { "alignment_check": public_ids <= private_ids, "total_samples": len(public_df), "track_analysis": track_analysis, "public_samples": len(public_df), "private_samples": len(complete_df), "id_alignment_rate": len(public_ids & private_ids) / len(public_ids) if public_ids else 0.0, } except Exception as e: return { "alignment_check": False, "total_samples": 0, "track_analysis": {}, "error": f"Validation failed: {str(e)}", }