Spaces:
				
			
			
	
			
			
		Paused
		
	
	
	
			
			
	
	
	
	
		
		
		Paused
		
	| import pystuck | |
| pystuck.run_server() | |
| import os | |
| os.system("wget https://github.com/Sxela/ArcaneGAN/releases/download/v0.4/ArcaneGANv0.4.jit") | |
| os.system("wget https://github.com/Sxela/ArcaneGAN/releases/download/v0.3/ArcaneGANv0.3.jit") | |
| os.system("wget https://github.com/Sxela/ArcaneGAN/releases/download/v0.2/ArcaneGANv0.2.jit") | |
| os.system("pip -qq install facenet_pytorch") | |
| from facenet_pytorch import MTCNN | |
| from torchvision import transforms | |
| import torch, PIL | |
| from tqdm.notebook import tqdm | |
| import gradio as gr | |
| import torch | |
| mtcnn = MTCNN(image_size=256, margin=80) | |
| # simplest ye olde trustworthy MTCNN for face detection with landmarks | |
| def detect(img): | |
| # Detect faces | |
| batch_boxes, batch_probs, batch_points = mtcnn.detect(img, landmarks=True) | |
| # Select faces | |
| if not mtcnn.keep_all: | |
| batch_boxes, batch_probs, batch_points = mtcnn.select_boxes( | |
| batch_boxes, batch_probs, batch_points, img, method=mtcnn.selection_method | |
| ) | |
| return batch_boxes, batch_points | |
| # my version of isOdd, should make a separate repo for it :D | |
| def makeEven(_x): | |
| return _x if (_x % 2 == 0) else _x+1 | |
| # the actual scaler function | |
| def scale(boxes, _img, max_res=1_500_000, target_face=256, fixed_ratio=0, max_upscale=2, VERBOSE=False): | |
| x, y = _img.size | |
| ratio = 2 #initial ratio | |
| #scale to desired face size | |
| if (boxes is not None): | |
| if len(boxes)>0: | |
| ratio = target_face/max(boxes[0][2:]-boxes[0][:2]); | |
| ratio = min(ratio, max_upscale) | |
| if VERBOSE: print('up by', ratio) | |
| if fixed_ratio>0: | |
| if VERBOSE: print('fixed ratio') | |
| ratio = fixed_ratio | |
| x*=ratio | |
| y*=ratio | |
| #downscale to fit into max res | |
| res = x*y | |
| if res > max_res: | |
| ratio = pow(res/max_res,1/2); | |
| if VERBOSE: print(ratio) | |
| x=int(x/ratio) | |
| y=int(y/ratio) | |
| #make dimensions even, because usually NNs fail on uneven dimensions due skip connection size mismatch | |
| x = makeEven(int(x)) | |
| y = makeEven(int(y)) | |
| size = (x, y) | |
| return _img.resize(size) | |
| """ | |
| A useful scaler algorithm, based on face detection. | |
| Takes PIL.Image, returns a uniformly scaled PIL.Image | |
| boxes: a list of detected bboxes | |
| _img: PIL.Image | |
| max_res: maximum pixel area to fit into. Use to stay below the VRAM limits of your GPU. | |
| target_face: desired face size. Upscale or downscale the whole image to fit the detected face into that dimension. | |
| fixed_ratio: fixed scale. Ignores the face size, but doesn't ignore the max_res limit. | |
| max_upscale: maximum upscale ratio. Prevents from scaling images with tiny faces to a blurry mess. | |
| """ | |
| def scale_by_face_size(_img, max_res=1_500_000, target_face=256, fix_ratio=0, max_upscale=2, VERBOSE=False): | |
| boxes = None | |
| boxes, _ = detect(_img) | |
| if VERBOSE: print('boxes',boxes) | |
| img_resized = scale(boxes, _img, max_res, target_face, fix_ratio, max_upscale, VERBOSE) | |
| return img_resized | |
| size = 256 | |
| means = [0.485, 0.456, 0.406] | |
| stds = [0.229, 0.224, 0.225] | |
| t_stds = torch.tensor(stds).cuda().half()[:,None,None] | |
| t_means = torch.tensor(means).cuda().half()[:,None,None] | |
| def makeEven(_x): | |
| return int(_x) if (_x % 2 == 0) else int(_x+1) | |
| img_transforms = transforms.Compose([ | |
| transforms.ToTensor(), | |
| transforms.Normalize(means,stds)]) | |
| def tensor2im(var): | |
| return var.mul(t_stds).add(t_means).mul(255.).clamp(0,255).permute(1,2,0) | |
| def proc_pil_img(input_image, model): | |
| transformed_image = img_transforms(input_image)[None,...].cuda().half() | |
| with torch.no_grad(): | |
| result_image = model(transformed_image)[0]; print(result_image.shape) | |
| output_image = tensor2im(result_image) | |
| output_image = output_image.detach().cpu().numpy().astype('uint8') | |
| output_image = PIL.Image.fromarray(output_image) | |
| return output_image | |
| def fit(img,maxsize=512): | |
| maxdim = max(*img.size) | |
| if maxdim>maxsize: | |
| ratio = maxsize/maxdim | |
| x,y = img.size | |
| size = (int(x*ratio),int(y*ratio)) | |
| img = img.resize(size) | |
| return img | |
| modelv4 = torch.jit.load('./ArcaneGANv0.4.jit').eval().cuda().half() | |
| modelv3 = torch.jit.load('./ArcaneGANv0.3.jit').eval().cuda().half() | |
| modelv2 = torch.jit.load('./ArcaneGANv0.2.jit').eval().cuda().half() | |
| def process(im, version): | |
| if version == 'version 0.4': | |
| im = scale_by_face_size(im, target_face=300, max_res=1_500_000, max_upscale=2) | |
| res = proc_pil_img(im, modelv4) | |
| elif version == 'version 0.3': | |
| im = scale_by_face_size(im, target_face=300, max_res=1_500_000, max_upscale=2) | |
| res = proc_pil_img(im, modelv3) | |
| else: | |
| im = scale_by_face_size(im, target_face=300, max_res=1_500_000, max_upscale=2) | |
| res = proc_pil_img(im, modelv2) | |
| return res | |
| title = "ArcaneGAN" | |
| description = "Gradio demo for ArcaneGAN, portrait to Arcane style. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below." | |
| article = "<div style='text-align: center;'>ArcaneGan by <a href='https://twitter.com/devdef' target='_blank'>Alexander S</a> | <a href='https://github.com/Sxela/ArcaneGAN' target='_blank'>Github Repo</a> | <center><img src='https://visitor-badge.glitch.me/badge?page_id=akhaliq_arcanegan' alt='visitor badge'></center></div>" | |
| gr.Interface( | |
| process, | |
| [gr.inputs.Image(type="pil", label="Input",shape=(256,256)),gr.inputs.Radio(choices=['version 0.2','version 0.3','version 0.4'], type="value", default='version 0.4', label='version') | |
| ], | |
| gr.outputs.Image(type="pil", label="Output"), | |
| title=title, | |
| description=description, | |
| article=article, | |
| examples=[['bill.png','version 0.3'],['keanu.png','version 0.4'],['will.jpeg','version 0.4']] | |
| ).launch(enable_queue=True,cache_examples=True) | |