akhaliq's picture
akhaliq HF Staff
Update app.py
f5f7379 verified
raw
history blame
4.81 kB
import gradio as gr
import numpy as np
import random
import os
import base64
import requests
import io
from PIL import Image, ImageOps
import pillow_heif # For HEIF/AVIF support
# --- Constants ---
MAX_SEED = np.iinfo(np.int32).max
API_URL = "https://router.huggingface.co/fal-ai/fal-ai/flux-kontext/dev?_subdomain=queue"
def get_headers():
"""Get headers for API requests"""
hf_token = os.getenv("HF_TOKEN")
if not hf_token:
raise gr.Error("HF_TOKEN environment variable not found. Please add your Hugging Face token to the Space settings.")
return {
"Authorization": f"Bearer {hf_token}",
"X-HF-Bill-To": "huggingface"
}
def query_api(payload):
"""Send request to the API and return response"""
headers = get_headers()
response = requests.post(API_URL, headers=headers, json=payload)
if response.status_code != 200:
raise gr.Error(f"API request failed with status {response.status_code}: {response.text}")
return response.content
# --- Core Inference Function for ChatInterface ---
def chat_fn(message, chat_history, seed, randomize_seed, guidance_scale, steps, progress=gr.Progress()):
"""
Performs image generation or editing based on user input from the chat interface.
"""
# Register HEIF opener with PIL for AVIF/HEIF support
pillow_heif.register_heif_opener()
prompt = message["text"]
files = message["files"]
if not prompt and not files:
raise gr.Error("Please provide a prompt and/or upload an image.")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Prepare the payload
payload = {
"parameters": {
"prompt": prompt,
"seed": seed,
"guidance_scale": guidance_scale,
"num_inference_steps": steps
}
}
if files:
print(f"Received image: {files[0]}")
try:
# Try to open and convert the image
input_image = Image.open(files[0])
# Convert to RGB if needed (handles RGBA, P, etc.)
if input_image.mode != "RGB":
input_image = input_image.convert("RGB")
# Auto-orient the image based on EXIF data
input_image = ImageOps.exif_transpose(input_image)
# Convert PIL image to base64 for the API
img_byte_arr = io.BytesIO()
input_image.save(img_byte_arr, format='PNG')
img_byte_arr.seek(0)
image_base64 = base64.b64encode(img_byte_arr.getvalue()).decode('utf-8')
# Add image to payload for image-to-image
payload["inputs"] = image_base64
except Exception as e:
raise gr.Error(f"Could not process the uploaded image: {str(e)}. Please try uploading a different image format (JPEG, PNG, WebP).")
progress(0.1, desc="Processing image...")
else:
print(f"Received prompt for text-to-image: {prompt}")
# For text-to-image, we don't need the inputs field
progress(0.1, desc="Generating image...")
try:
# Make API request
image_bytes = query_api(payload)
# Convert response bytes to PIL Image
image = Image.open(io.BytesIO(image_bytes))
progress(1.0, desc="Complete!")
return gr.Image(value=image)
except Exception as e:
raise gr.Error(f"Failed to generate image: {str(e)}")
# --- UI Definition using gr.ChatInterface ---
seed_slider = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
randomize_checkbox = gr.Checkbox(label="Randomize seed", value=False)
guidance_slider = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=2.5)
steps_slider = gr.Slider(label="Steps", minimum=1, maximum=30, value=28, step=1)
demo = gr.ChatInterface(
fn=chat_fn,
title="FLUX.1 Kontext [dev] - Direct API",
description="""<p style='text-align: center;'>
A simple chat UI for the <b>FLUX.1 Kontext</b> model using direct API calls with requests.
<br>
To edit an image, upload it and type your instructions (e.g., "Add a hat").
<br>
To generate an image, just type a prompt (e.g., "A photo of an astronaut on a horse").
<br>
Find the model on <a href='https://huggingface.co/black-forest-labs/FLUX.1-Kontext-dev' target='_blank'>Hugging Face</a>.
</p>""",
multimodal=True,
textbox=gr.MultimodalTextbox(
file_types=["image"],
placeholder="Type a prompt and/or upload an image...",
render=False
),
additional_inputs=[
seed_slider,
randomize_checkbox,
guidance_slider,
steps_slider
],
theme="soft"
)
if __name__ == "__main__":
demo.launch()