akhaliq's picture
akhaliq HF Staff
Update app.py
9ab45e8 verified
import gradio as gr
import numpy as np
import spaces
import torch
import random
import os
import tempfile
from PIL import Image, ImageOps
import pillow_heif # For HEIF/AVIF support
# Import the pipeline from diffusers
from diffusers import FluxKontextPipeline
# --- Constants ---
MAX_SEED = np.iinfo(np.int32).max
# --- Global pipeline variable ---
pipe = None
def load_model():
"""Load the model on CPU first, then move to GPU when needed"""
global pipe
if pipe is None:
# Register HEIF opener with PIL for AVIF/HEIF support
pillow_heif.register_heif_opener()
# Get token from environment variable
hf_token = os.getenv("HF_TOKEN")
if hf_token:
pipe = FluxKontextPipeline.from_pretrained(
"black-forest-labs/FLUX.1-Kontext-dev",
torch_dtype=torch.bfloat16,
token=hf_token,
)
else:
raise gr.Error("HF_TOKEN environment variable not found. Please add your Hugging Face token to the Space settings.")
return pipe
# --- Core Inference Function for ChatInterface ---
@spaces.GPU(duration=120) # Set duration based on expected inference time
def chat_fn(message, chat_history, seed, randomize_seed, guidance_scale, steps, progress=gr.Progress(track_tqdm=True)):
"""
Performs image generation or editing based on user input from the chat interface.
"""
# Load and move model to GPU within the decorated function
pipe = load_model()
pipe = pipe.to("cuda")
prompt = message["text"]
files = message["files"]
if not prompt and not files:
raise gr.Error("Please provide a prompt and/or upload an image.")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device="cuda").manual_seed(int(seed))
input_image = None
if files:
print(f"Received image: {files[0]}")
try:
# Try to open and convert the image
input_image = Image.open(files[0])
# Convert to RGB if needed (handles RGBA, P, etc.)
if input_image.mode != "RGB":
input_image = input_image.convert("RGB")
# Auto-orient the image based on EXIF data
input_image = ImageOps.exif_transpose(input_image)
except Exception as e:
raise gr.Error(f"Could not process the uploaded image: {str(e)}. Please try uploading a different image format (JPEG, PNG, WebP).")
image = pipe(
image=input_image,
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=steps,
generator=generator,
).images[0]
else:
print(f"Received prompt for text-to-image: {prompt}")
image = pipe(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=steps,
generator=generator,
).images[0]
# Move model back to CPU to free GPU memory
pipe = pipe.to("cpu")
torch.cuda.empty_cache()
# Return the PIL Image as a Gradio Image component
return gr.Image(value=image)
# --- UI Definition using gr.ChatInterface ---
seed_slider = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
randomize_checkbox = gr.Checkbox(label="Randomize seed", value=False)
guidance_slider = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=2.5)
steps_slider = gr.Slider(label="Steps", minimum=1, maximum=30, value=28, step=1)
# --- Examples without external URLs ---
# Remove examples temporarily to avoid format issues
examples = None
demo = gr.ChatInterface(
fn=chat_fn,
title="FLUX.1 Kontext [dev]",
description="""<p style='text-align: center;'>
A simple chat UI for the <b>FLUX.1 Kontext</b> model running on ZeroGPU.
<br>
To edit an image, upload it and type your instructions (e.g., "Add a hat").
<br>
To generate an image, just type a prompt (e.g., "A photo of an astronaut on a horse").
<br>
Find the model on <a href='https://huggingface.co/black-forest-labs/FLUX.1-Kontext-dev' target='_blank'>Hugging Face</a>.
</p>""",
multimodal=True, # This is important for MultimodalTextbox to work
textbox=gr.MultimodalTextbox(
file_types=["image"],
placeholder="Type a prompt and/or upload an image...",
render=False
),
additional_inputs=[
seed_slider,
randomize_checkbox,
guidance_slider,
steps_slider
],
examples=examples,
theme="soft"
)
if __name__ == "__main__":
demo.launch()