Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -3,142 +3,156 @@ import numpy as np
|
|
3 |
import random
|
4 |
import os
|
5 |
import tempfile
|
|
|
|
|
6 |
from PIL import Image, ImageOps
|
7 |
import pillow_heif # For HEIF/AVIF support
|
8 |
import io
|
9 |
-
import fal_client
|
10 |
-
import base64
|
11 |
|
12 |
# --- Constants ---
|
13 |
MAX_SEED = np.iinfo(np.int32).max
|
14 |
|
15 |
-
def
|
16 |
-
"""
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
# Get token from environment variable
|
21 |
hf_token = os.getenv("HF_TOKEN")
|
22 |
if not hf_token:
|
23 |
-
raise gr.Error("HF_TOKEN environment variable not found. Please add your Hugging Face token to the
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
return True
|
28 |
-
|
29 |
-
def query_api(image_bytes, prompt, seed, guidance_scale, steps, progress_callback=None):
|
30 |
-
"""Send request using fal_client"""
|
31 |
|
32 |
-
|
|
|
33 |
|
34 |
if progress_callback:
|
35 |
-
progress_callback(0.
|
36 |
-
|
37 |
-
# Convert image bytes to base64
|
38 |
-
image_base64 = base64.b64encode(image_bytes).decode('utf-8')
|
39 |
|
40 |
# Create a temporary file for the image
|
41 |
with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as temp_file:
|
42 |
temp_file.write(image_bytes)
|
43 |
-
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
progress_callback(0.5, f"Processing: {log['message'][:50]}...")
|
51 |
|
52 |
try:
|
53 |
if progress_callback:
|
54 |
-
progress_callback(0.3, "
|
55 |
-
|
56 |
-
#
|
57 |
-
result =
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
"seed": seed,
|
63 |
-
"guidance_scale": guidance_scale,
|
64 |
-
"num_inference_steps": steps,
|
65 |
-
},
|
66 |
-
with_logs=True,
|
67 |
-
on_queue_update=on_queue_update,
|
68 |
)
|
69 |
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
if progress_callback:
|
73 |
-
progress_callback(0.9, "
|
74 |
-
|
75 |
-
# Handle the result
|
76 |
-
if isinstance(result, dict):
|
77 |
-
if 'images' in result and len(result['images']) > 0:
|
78 |
-
# Get the first image
|
79 |
-
image_info = result['images'][0]
|
80 |
-
if isinstance(image_info, dict) and 'url' in image_info:
|
81 |
-
# Download image from URL
|
82 |
-
import requests
|
83 |
-
img_response = requests.get(image_info['url'])
|
84 |
-
if img_response.status_code == 200:
|
85 |
-
if progress_callback:
|
86 |
-
progress_callback(1.0, "Complete!")
|
87 |
-
return img_response.content
|
88 |
-
else:
|
89 |
-
raise gr.Error(f"Failed to download result image: {img_response.status_code}")
|
90 |
-
elif isinstance(image_info, str):
|
91 |
-
# Direct URL
|
92 |
-
import requests
|
93 |
-
img_response = requests.get(image_info)
|
94 |
-
if img_response.status_code == 200:
|
95 |
-
if progress_callback:
|
96 |
-
progress_callback(1.0, "Complete!")
|
97 |
-
return img_response.content
|
98 |
-
elif 'image' in result:
|
99 |
-
# Single image field
|
100 |
-
if isinstance(result['image'], dict) and 'url' in result['image']:
|
101 |
-
import requests
|
102 |
-
img_response = requests.get(result['image']['url'])
|
103 |
-
if img_response.status_code == 200:
|
104 |
-
if progress_callback:
|
105 |
-
progress_callback(1.0, "Complete!")
|
106 |
-
return img_response.content
|
107 |
-
elif isinstance(result['image'], str):
|
108 |
-
# Could be URL or base64
|
109 |
-
if result['image'].startswith('http'):
|
110 |
-
import requests
|
111 |
-
img_response = requests.get(result['image'])
|
112 |
-
if img_response.status_code == 200:
|
113 |
-
if progress_callback:
|
114 |
-
progress_callback(1.0, "Complete!")
|
115 |
-
return img_response.content
|
116 |
-
else:
|
117 |
-
# Assume base64
|
118 |
-
try:
|
119 |
-
if progress_callback:
|
120 |
-
progress_callback(1.0, "Complete!")
|
121 |
-
return base64.b64decode(result['image'])
|
122 |
-
except:
|
123 |
-
pass
|
124 |
-
elif 'url' in result:
|
125 |
-
# Direct URL in result
|
126 |
-
import requests
|
127 |
-
img_response = requests.get(result['url'])
|
128 |
-
if img_response.status_code == 200:
|
129 |
-
if progress_callback:
|
130 |
-
progress_callback(1.0, "Complete!")
|
131 |
-
return img_response.content
|
132 |
-
|
133 |
-
# If we get here, the result format is unexpected
|
134 |
-
raise gr.Error(f"Unexpected result format from FAL API: {result}")
|
135 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
except Exception as e:
|
137 |
-
raise gr.Error(f"
|
138 |
finally:
|
139 |
-
# Clean up temporary
|
140 |
try:
|
141 |
-
os.unlink(
|
|
|
142 |
except:
|
143 |
pass
|
144 |
|
@@ -159,6 +173,9 @@ def chat_fn(message, chat_history, seed, randomize_seed, guidance_scale, steps,
|
|
159 |
if files:
|
160 |
print(f"Received image: {files[0]}")
|
161 |
try:
|
|
|
|
|
|
|
162 |
# Try to open and convert the image
|
163 |
input_image = Image.open(files[0])
|
164 |
# Convert to RGB if needed (handles RGBA, P, etc.)
|
@@ -183,8 +200,8 @@ def chat_fn(message, chat_history, seed, randomize_seed, guidance_scale, steps,
|
|
183 |
raise gr.Error("This model (FLUX.1 Kontext) requires an input image. Please upload an image to edit.")
|
184 |
|
185 |
try:
|
186 |
-
# Make API request
|
187 |
-
result_bytes =
|
188 |
|
189 |
# Try to convert response bytes to PIL Image
|
190 |
try:
|
@@ -192,14 +209,7 @@ def chat_fn(message, chat_history, seed, randomize_seed, guidance_scale, steps,
|
|
192 |
except Exception as img_error:
|
193 |
print(f"Failed to open image: {img_error}")
|
194 |
print(f"Image bytes type: {type(result_bytes)}, length: {len(result_bytes) if hasattr(result_bytes, '__len__') else 'unknown'}")
|
195 |
-
|
196 |
-
# Try to decode as base64 if direct opening failed
|
197 |
-
try:
|
198 |
-
import base64
|
199 |
-
decoded_bytes = base64.b64decode(result_bytes)
|
200 |
-
image = Image.open(io.BytesIO(decoded_bytes))
|
201 |
-
except:
|
202 |
-
raise gr.Error(f"Could not process API response as image. Response length: {len(result_bytes) if hasattr(result_bytes, '__len__') else 'unknown'}")
|
203 |
|
204 |
progress(1.0, desc="Complete!")
|
205 |
return gr.Image(value=image)
|
@@ -219,9 +229,9 @@ steps_slider = gr.Slider(label="Steps", minimum=1, maximum=30, value=28, step=1)
|
|
219 |
|
220 |
demo = gr.ChatInterface(
|
221 |
fn=chat_fn,
|
222 |
-
title="FLUX.1 Kontext [dev] -
|
223 |
description="""<p style='text-align: center;'>
|
224 |
-
A simple chat UI for the <b>FLUX.1 Kontext [dev]</b> model using
|
225 |
<br>
|
226 |
<b>Upload an image</b> and type your editing instructions (e.g., "Turn the cat into a tiger", "Add a hat").
|
227 |
<br>
|
@@ -229,7 +239,7 @@ demo = gr.ChatInterface(
|
|
229 |
<br>
|
230 |
Find the model on <a href='https://huggingface.co/black-forest-labs/FLUX.1-Kontext-dev' target='_blank'>Hugging Face</a>.
|
231 |
<br>
|
232 |
-
<b>
|
233 |
</p>""",
|
234 |
multimodal=True,
|
235 |
textbox=gr.MultimodalTextbox(
|
|
|
3 |
import random
|
4 |
import os
|
5 |
import tempfile
|
6 |
+
import subprocess
|
7 |
+
import json
|
8 |
from PIL import Image, ImageOps
|
9 |
import pillow_heif # For HEIF/AVIF support
|
10 |
import io
|
|
|
|
|
11 |
|
12 |
# --- Constants ---
|
13 |
MAX_SEED = np.iinfo(np.int32).max
|
14 |
|
15 |
+
def setup_node_environment():
|
16 |
+
"""Setup Node.js environment and install required packages"""
|
17 |
+
try:
|
18 |
+
# Check if node is available
|
19 |
+
result = subprocess.run(['node', '--version'], capture_output=True, text=True)
|
20 |
+
if result.returncode != 0:
|
21 |
+
raise gr.Error("Node.js is not installed. Please install Node.js to use this feature.")
|
22 |
+
|
23 |
+
# Check if @huggingface/inference is installed, if not install it
|
24 |
+
package_check = subprocess.run(['npm', 'list', '@huggingface/inference'], capture_output=True, text=True)
|
25 |
+
if package_check.returncode != 0:
|
26 |
+
print("Installing @huggingface/inference package...")
|
27 |
+
install_result = subprocess.run(['npm', 'install', '@huggingface/inference'], capture_output=True, text=True)
|
28 |
+
if install_result.returncode != 0:
|
29 |
+
raise gr.Error(f"Failed to install @huggingface/inference: {install_result.stderr}")
|
30 |
+
|
31 |
+
return True
|
32 |
+
except FileNotFoundError:
|
33 |
+
raise gr.Error("Node.js or npm not found. Please install Node.js and npm.")
|
34 |
+
|
35 |
+
def create_js_inference_script(image_path, prompt, hf_token):
|
36 |
+
"""Create JavaScript inference script"""
|
37 |
+
js_code = f"""
|
38 |
+
const {{ InferenceClient }} = require("@huggingface/inference");
|
39 |
+
const fs = require("fs");
|
40 |
+
|
41 |
+
async function runInference() {{
|
42 |
+
try {{
|
43 |
+
const client = new InferenceClient("{hf_token}");
|
44 |
+
const data = fs.readFileSync("{image_path}");
|
45 |
+
|
46 |
+
const image = await client.imageToImage({{
|
47 |
+
provider: "replicate",
|
48 |
+
model: "black-forest-labs/FLUX.1-Kontext-dev",
|
49 |
+
inputs: data,
|
50 |
+
parameters: {{ prompt: "{prompt}" }},
|
51 |
+
}}, {{
|
52 |
+
billTo: "huggingface",
|
53 |
+
}});
|
54 |
+
|
55 |
+
// Convert blob to buffer
|
56 |
+
const arrayBuffer = await image.arrayBuffer();
|
57 |
+
const buffer = Buffer.from(arrayBuffer);
|
58 |
+
|
59 |
+
// Output as base64 for Python to read
|
60 |
+
const base64 = buffer.toString('base64');
|
61 |
+
console.log(JSON.stringify({{
|
62 |
+
success: true,
|
63 |
+
image_base64: base64,
|
64 |
+
content_type: image.type || 'image/jpeg'
|
65 |
+
}}));
|
66 |
+
|
67 |
+
}} catch (error) {{
|
68 |
+
console.log(JSON.stringify({{
|
69 |
+
success: false,
|
70 |
+
error: error.message
|
71 |
+
}}));
|
72 |
+
process.exit(1);
|
73 |
+
}}
|
74 |
+
}}
|
75 |
+
|
76 |
+
runInference();
|
77 |
+
"""
|
78 |
+
return js_code
|
79 |
+
|
80 |
+
def query_api_js(image_bytes, prompt, seed, guidance_scale, steps, progress_callback=None):
|
81 |
+
"""Send request using JavaScript HF Inference Client"""
|
82 |
|
83 |
# Get token from environment variable
|
84 |
hf_token = os.getenv("HF_TOKEN")
|
85 |
if not hf_token:
|
86 |
+
raise gr.Error("HF_TOKEN environment variable not found. Please add your Hugging Face token to the environment.")
|
87 |
|
88 |
+
if progress_callback:
|
89 |
+
progress_callback(0.1, "Setting up Node.js environment...")
|
|
|
|
|
|
|
|
|
90 |
|
91 |
+
# Setup Node.js environment
|
92 |
+
setup_node_environment()
|
93 |
|
94 |
if progress_callback:
|
95 |
+
progress_callback(0.2, "Preparing image...")
|
|
|
|
|
|
|
96 |
|
97 |
# Create a temporary file for the image
|
98 |
with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as temp_file:
|
99 |
temp_file.write(image_bytes)
|
100 |
+
temp_image_path = temp_file.name
|
101 |
|
102 |
+
# Create temporary JavaScript file
|
103 |
+
with tempfile.NamedTemporaryFile(mode='w', suffix='.js', delete=False) as js_file:
|
104 |
+
js_code = create_js_inference_script(temp_image_path, prompt.replace('"', '\\"'), hf_token)
|
105 |
+
js_file.write(js_code)
|
106 |
+
js_file_path = js_file.name
|
|
|
107 |
|
108 |
try:
|
109 |
if progress_callback:
|
110 |
+
progress_callback(0.3, "Running JavaScript inference...")
|
111 |
+
|
112 |
+
# Run the JavaScript code
|
113 |
+
result = subprocess.run(
|
114 |
+
['node', js_file_path],
|
115 |
+
capture_output=True,
|
116 |
+
text=True,
|
117 |
+
timeout=300 # 5 minute timeout
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
)
|
119 |
|
120 |
+
if progress_callback:
|
121 |
+
progress_callback(0.8, "Processing result...")
|
122 |
+
|
123 |
+
if result.returncode != 0:
|
124 |
+
raise gr.Error(f"JavaScript inference failed: {result.stderr}")
|
125 |
+
|
126 |
+
# Parse the JSON output
|
127 |
+
try:
|
128 |
+
output = json.loads(result.stdout.strip())
|
129 |
+
except json.JSONDecodeError:
|
130 |
+
raise gr.Error(f"Failed to parse JavaScript output: {result.stdout}")
|
131 |
+
|
132 |
+
if not output.get('success'):
|
133 |
+
raise gr.Error(f"Inference error: {output.get('error', 'Unknown error')}")
|
134 |
|
135 |
if progress_callback:
|
136 |
+
progress_callback(0.9, "Decoding image...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
+
# Decode base64 image
|
139 |
+
import base64
|
140 |
+
image_data = base64.b64decode(output['image_base64'])
|
141 |
+
|
142 |
+
if progress_callback:
|
143 |
+
progress_callback(1.0, "Complete!")
|
144 |
+
|
145 |
+
return image_data
|
146 |
+
|
147 |
+
except subprocess.TimeoutExpired:
|
148 |
+
raise gr.Error("Inference timed out. Please try again.")
|
149 |
except Exception as e:
|
150 |
+
raise gr.Error(f"Error running JavaScript inference: {str(e)}")
|
151 |
finally:
|
152 |
+
# Clean up temporary files
|
153 |
try:
|
154 |
+
os.unlink(temp_image_path)
|
155 |
+
os.unlink(js_file_path)
|
156 |
except:
|
157 |
pass
|
158 |
|
|
|
173 |
if files:
|
174 |
print(f"Received image: {files[0]}")
|
175 |
try:
|
176 |
+
# Register HEIF opener with PIL for AVIF/HEIF support
|
177 |
+
pillow_heif.register_heif_opener()
|
178 |
+
|
179 |
# Try to open and convert the image
|
180 |
input_image = Image.open(files[0])
|
181 |
# Convert to RGB if needed (handles RGBA, P, etc.)
|
|
|
200 |
raise gr.Error("This model (FLUX.1 Kontext) requires an input image. Please upload an image to edit.")
|
201 |
|
202 |
try:
|
203 |
+
# Make API request using JavaScript
|
204 |
+
result_bytes = query_api_js(image_bytes, prompt, seed, guidance_scale, steps, progress_callback=progress)
|
205 |
|
206 |
# Try to convert response bytes to PIL Image
|
207 |
try:
|
|
|
209 |
except Exception as img_error:
|
210 |
print(f"Failed to open image: {img_error}")
|
211 |
print(f"Image bytes type: {type(result_bytes)}, length: {len(result_bytes) if hasattr(result_bytes, '__len__') else 'unknown'}")
|
212 |
+
raise gr.Error(f"Could not process API response as image. Response length: {len(result_bytes) if hasattr(result_bytes, '__len__') else 'unknown'}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
|
214 |
progress(1.0, desc="Complete!")
|
215 |
return gr.Image(value=image)
|
|
|
229 |
|
230 |
demo = gr.ChatInterface(
|
231 |
fn=chat_fn,
|
232 |
+
title="FLUX.1 Kontext [dev] - HF Inference Client (JS)",
|
233 |
description="""<p style='text-align: center;'>
|
234 |
+
A simple chat UI for the <b>FLUX.1 Kontext [dev]</b> model using Hugging Face Inference Client via JavaScript.
|
235 |
<br>
|
236 |
<b>Upload an image</b> and type your editing instructions (e.g., "Turn the cat into a tiger", "Add a hat").
|
237 |
<br>
|
|
|
239 |
<br>
|
240 |
Find the model on <a href='https://huggingface.co/black-forest-labs/FLUX.1-Kontext-dev' target='_blank'>Hugging Face</a>.
|
241 |
<br>
|
242 |
+
<b>Requirements:</b> Node.js and npm must be installed. Uses HF_TOKEN environment variable.
|
243 |
</p>""",
|
244 |
multimodal=True,
|
245 |
textbox=gr.MultimodalTextbox(
|