akhaliq HF Staff commited on
Commit
9231de3
·
verified ·
1 Parent(s): be647a2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +38 -38
app.py CHANGED
@@ -3,6 +3,7 @@ import numpy as np
3
  import spaces
4
  import torch
5
  import random
 
6
  from PIL import Image
7
 
8
  # Import the pipeline from diffusers
@@ -11,13 +12,24 @@ from diffusers import FluxKontextPipeline
11
  # --- Constants and Model Loading ---
12
  MAX_SEED = np.iinfo(np.int32).max
13
 
 
 
 
 
 
 
 
14
  # Load the pretrained model
15
- # Note: This requires a CUDA-enabled GPU. Error handling is added for environments without it.
16
  try:
17
- pipe = FluxKontextPipeline.from_pretrained(
18
- "black-forest-labs/FLUX.1-Kontext-dev",
19
- torch_dtype=torch.bfloat16
20
- ).to("cuda")
 
 
 
 
 
21
  except Exception as e:
22
  pipe = None
23
  print(f"Warning: Could not load the model on CUDA. GPU is required. Error: {e}")
@@ -28,40 +40,23 @@ except Exception as e:
28
  def chat_fn(message, chat_history, seed, randomize_seed, guidance_scale, steps, progress=gr.Progress(track_tqdm=True)):
29
  """
30
  Performs image generation or editing based on user input from the chat interface.
31
-
32
- Args:
33
- message (dict): A dictionary from gr.MultimodalTextbox, containing:
34
- - "text" (str): The user's text prompt.
35
- - "files" (list): A list of paths to uploaded files.
36
- chat_history (list): The history of the conversation (managed by ChatInterface).
37
- seed (int): The random seed for generation.
38
- randomize_seed (bool): If True, a random seed is used.
39
- guidance_scale (float): Controls adherence to the prompt.
40
- steps (int): Number of inference steps.
41
- progress (gr.Progress): Gradio progress tracker.
42
-
43
- Returns:
44
- PIL.Image.Image: The generated or edited image to be displayed in the chat.
45
  """
46
  if pipe is None:
47
- raise gr.Error("Model could not be loaded. A CUDA-enabled GPU is required to run this application.")
48
 
49
  prompt = message["text"]
50
  files = message["files"]
51
 
52
- # Input validation
53
  if not prompt and not files:
54
  raise gr.Error("Please provide a prompt and/or upload an image.")
55
 
56
  if randomize_seed:
57
  seed = random.randint(0, MAX_SEED)
58
 
59
- # Set up a PyTorch generator for reproducible results
60
- generator = torch.Generator(device="cuda").manual_seed(seed)
61
 
62
  input_image = None
63
  if files:
64
- # User has uploaded an image for editing (image-to-image)
65
  print(f"Received image: {files[0]}")
66
  input_image = Image.open(files[0]).convert("RGB")
67
  image = pipe(
@@ -72,7 +67,6 @@ def chat_fn(message, chat_history, seed, randomize_seed, guidance_scale, steps,
72
  generator=generator,
73
  ).images[0]
74
  else:
75
- # No image uploaded, perform text-to-image generation
76
  print(f"Received prompt for text-to-image: {prompt}")
77
  image = pipe(
78
  prompt=prompt,
@@ -81,20 +75,32 @@ def chat_fn(message, chat_history, seed, randomize_seed, guidance_scale, steps,
81
  generator=generator,
82
  ).images[0]
83
 
84
- # To also inform the user of the seed, you could optionally return a tuple,
85
- # but for a clean image output, we just return the image.
86
- # For example: return (image, f"Seed: {seed}")
87
  return image
88
 
89
  # --- UI Definition using gr.ChatInterface ---
90
 
91
- # Define the components for "Advanced Settings" that will be passed to `additional_inputs`
92
  seed_slider = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
93
  randomize_checkbox = gr.Checkbox(label="Randomize seed", value=False)
94
  guidance_slider = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=2.5)
95
  steps_slider = gr.Slider(label="Steps", minimum=1, maximum=30, value=28, step=1)
96
 
97
- # Create the ChatInterface
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98
  demo = gr.ChatInterface(
99
  fn=chat_fn,
100
  title="FLUX.1 Kontext [dev]",
@@ -107,11 +113,10 @@ demo = gr.ChatInterface(
107
  <br>
108
  Find the model on <a href='https://huggingface.co/black-forest-labs/FLUX.1-Kontext-dev' target='_blank'>Hugging Face</a>.
109
  </p>""",
110
- # Use a multimodal textbox to allow both text and image uploads
111
  textbox=gr.MultimodalTextbox(
112
  file_types=["image"],
113
  placeholder="Type a prompt and/or upload an image...",
114
- render=False # Important: Let ChatInterface render the textbox
115
  ),
116
  additional_inputs=[
117
  seed_slider,
@@ -119,14 +124,9 @@ demo = gr.ChatInterface(
119
  guidance_slider,
120
  steps_slider
121
  ],
122
- examples=[
123
- {"text": "A cute robot reading a book", "files": []},
124
- {"text": "change his shirt to a hawaiian shirt", "files": ["https://gradio-builds.s3.amazonaws.com/demo-files/chewbacca.png"]},
125
- {"text": "make it a wooden house", "files": ["https://gradio-builds.s3.amazonaws.com/demo-files/house.png"]},
126
- ],
127
  theme="soft"
128
  )
129
 
130
- # Launch the application
131
  if __name__ == "__main__":
132
  demo.launch()
 
3
  import spaces
4
  import torch
5
  import random
6
+ import os
7
  from PIL import Image
8
 
9
  # Import the pipeline from diffusers
 
12
  # --- Constants and Model Loading ---
13
  MAX_SEED = np.iinfo(np.int32).max
14
 
15
+ # --- FIX 1: Handle Hugging Face Authentication ---
16
+ # This is a gated model. You must have access on Hugging Face and provide a token.
17
+ # 1. Visit https://huggingface.co/black-forest-labs/FLUX.1-Kontext-dev and accept the terms.
18
+ # 2. Get an access token from https://huggingface.co/settings/tokens
19
+ # 3. Add the token below or set it as an environment variable `HF_TOKEN`.
20
+ HF_TOKEN = os.getenv("HF_TOKEN", "YOUR_HUGGING_FACE_TOKEN") # Replace with your token
21
+
22
  # Load the pretrained model
 
23
  try:
24
+ if HF_TOKEN == "YOUR_HUGGING_FACE_TOKEN":
25
+ pipe = None
26
+ print("Warning: Hugging Face token not provided. Please replace 'YOUR_HUGGING_FACE_TOKEN' with your actual token.")
27
+ else:
28
+ pipe = FluxKontextPipeline.from_pretrained(
29
+ "black-forest-labs/FLUX.1-Kontext-dev",
30
+ torch_dtype=torch.bfloat16,
31
+ token=HF_TOKEN, # Use the token for authentication
32
+ ).to("cuda")
33
  except Exception as e:
34
  pipe = None
35
  print(f"Warning: Could not load the model on CUDA. GPU is required. Error: {e}")
 
40
  def chat_fn(message, chat_history, seed, randomize_seed, guidance_scale, steps, progress=gr.Progress(track_tqdm=True)):
41
  """
42
  Performs image generation or editing based on user input from the chat interface.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
  """
44
  if pipe is None:
45
+ raise gr.Error("Model could not be loaded. This could be due to a missing Hugging Face token, no access to the model, or no CUDA-enabled GPU.")
46
 
47
  prompt = message["text"]
48
  files = message["files"]
49
 
 
50
  if not prompt and not files:
51
  raise gr.Error("Please provide a prompt and/or upload an image.")
52
 
53
  if randomize_seed:
54
  seed = random.randint(0, MAX_SEED)
55
 
56
+ generator = torch.Generator(device="cuda").manual_seed(int(seed))
 
57
 
58
  input_image = None
59
  if files:
 
60
  print(f"Received image: {files[0]}")
61
  input_image = Image.open(files[0]).convert("RGB")
62
  image = pipe(
 
67
  generator=generator,
68
  ).images[0]
69
  else:
 
70
  print(f"Received prompt for text-to-image: {prompt}")
71
  image = pipe(
72
  prompt=prompt,
 
75
  generator=generator,
76
  ).images[0]
77
 
 
 
 
78
  return image
79
 
80
  # --- UI Definition using gr.ChatInterface ---
81
 
 
82
  seed_slider = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
83
  randomize_checkbox = gr.Checkbox(label="Randomize seed", value=False)
84
  guidance_slider = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=2.5)
85
  steps_slider = gr.Slider(label="Steps", minimum=1, maximum=30, value=28, step=1)
86
 
87
+ # --- FIX 2: Correctly format the examples as a list of lists ---
88
+ # Format: [ [message_dict, seed, randomize, guidance, steps], ... ]
89
+ examples = [
90
+ [
91
+ {"text": "A cute robot reading a book", "files": []},
92
+ 42, False, 2.5, 28
93
+ ],
94
+ [
95
+ {"text": "change his shirt to a hawaiian shirt", "files": ["https://gradio-builds.s3.amazonaws.com/demo-files/chewbacca.png"]},
96
+ 12345, False, 3.0, 25
97
+ ],
98
+ [
99
+ {"text": "make it a wooden house, add a chimney", "files": ["https://gradio-builds.s3.amazonaws.com/demo-files/house.png"]},
100
+ 54321, False, 2.0, 30
101
+ ],
102
+ ]
103
+
104
  demo = gr.ChatInterface(
105
  fn=chat_fn,
106
  title="FLUX.1 Kontext [dev]",
 
113
  <br>
114
  Find the model on <a href='https://huggingface.co/black-forest-labs/FLUX.1-Kontext-dev' target='_blank'>Hugging Face</a>.
115
  </p>""",
 
116
  textbox=gr.MultimodalTextbox(
117
  file_types=["image"],
118
  placeholder="Type a prompt and/or upload an image...",
119
+ render=False
120
  ),
121
  additional_inputs=[
122
  seed_slider,
 
124
  guidance_slider,
125
  steps_slider
126
  ],
127
+ examples=examples, # Use the correctly formatted list
 
 
 
 
128
  theme="soft"
129
  )
130
 
 
131
  if __name__ == "__main__":
132
  demo.launch()