File size: 4,103 Bytes
2b7bf83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

# Copyright 2019 Tomoki Hayashi
#  MIT License (https://opensource.org/licenses/MIT)

"""Calculate statistics of feature files."""

import argparse
import logging
import os

import numpy as np
import yaml

from sklearn.preprocessing import StandardScaler
from tqdm import tqdm

from parallel_wavegan.datasets import MelDataset
from parallel_wavegan.datasets import MelSCPDataset
from parallel_wavegan.utils import read_hdf5
from parallel_wavegan.utils import write_hdf5


def main():
    """Run preprocessing process."""
    parser = argparse.ArgumentParser(
        description="Compute mean and variance of dumped raw features "
        "(See detail in parallel_wavegan/bin/compute_statistics.py)."
    )
    parser.add_argument(
        "--feats-scp",
        "--scp",
        default=None,
        type=str,
        help="kaldi-style feats.scp file. "
        "you need to specify either feats-scp or rootdir.",
    )
    parser.add_argument(
        "--rootdir",
        type=str,
        help="directory including feature files. "
        "you need to specify either feats-scp or rootdir.",
    )
    parser.add_argument(
        "--config",
        type=str,
        required=True,
        help="yaml format configuration file.",
    )
    parser.add_argument(
        "--dumpdir",
        default=None,
        type=str,
        required=True,
        help="directory to save statistics. if not provided, "
        "stats will be saved in the above root directory. (default=None)",
    )
    parser.add_argument(
        "--verbose",
        type=int,
        default=1,
        help="logging level. higher is more logging. (default=1)",
    )
    args = parser.parse_args()

    # set logger
    if args.verbose > 1:
        logging.basicConfig(
            level=logging.DEBUG,
            format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
        )
    elif args.verbose > 0:
        logging.basicConfig(
            level=logging.INFO,
            format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
        )
    else:
        logging.basicConfig(
            level=logging.WARN,
            format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
        )
        logging.warning("Skip DEBUG/INFO messages")

    # load config
    with open(args.config) as f:
        config = yaml.load(f, Loader=yaml.Loader)
    config.update(vars(args))

    # check arguments
    if (args.feats_scp is not None and args.rootdir is not None) or (
        args.feats_scp is None and args.rootdir is None
    ):
        raise ValueError("Please specify either --rootdir or --feats-scp.")

    # check directory existence
    if not os.path.exists(args.dumpdir):
        os.makedirs(args.dumpdir)

    # get dataset
    if args.feats_scp is None:
        if config["format"] == "hdf5":
            mel_query = "*.h5"
            mel_load_fn = lambda x: read_hdf5(x, "feats")  # NOQA
        elif config["format"] == "npy":
            mel_query = "*-feats.npy"
            mel_load_fn = np.load
        else:
            raise ValueError("support only hdf5 or npy format.")
        dataset = MelDataset(args.rootdir, mel_query=mel_query, mel_load_fn=mel_load_fn)
    else:
        dataset = MelSCPDataset(args.feats_scp)
    logging.info(f"The number of files = {len(dataset)}.")

    # calculate statistics
    scaler = StandardScaler()
    for mel in tqdm(dataset):
        scaler.partial_fit(mel)

    if config["format"] == "hdf5":
        write_hdf5(
            os.path.join(args.dumpdir, "stats.h5"),
            "mean",
            scaler.mean_.astype(np.float32),
        )
        write_hdf5(
            os.path.join(args.dumpdir, "stats.h5"),
            "scale",
            scaler.scale_.astype(np.float32),
        )
    else:
        stats = np.stack([scaler.mean_, scaler.scale_], axis=0)
        np.save(
            os.path.join(args.dumpdir, "stats.npy"),
            stats.astype(np.float32),
            allow_pickle=False,
        )


if __name__ == "__main__":
    main()