Spaces:
Running
on
L4
Running
on
L4
File size: 26,437 Bytes
0fa6dba f716063 f8c5d67 f716063 b7fc0b0 f716063 f8c5d67 52ed211 cec99f3 52ed211 f8c5d67 d751314 f716063 d751314 972f767 f716063 ad908e5 f716063 b7fc0b0 f716063 628b418 ad908e5 42fb4a5 628b418 b7fc0b0 42fb4a5 ad908e5 42fb4a5 628b418 ad908e5 f716063 42fb4a5 f716063 628b418 42fb4a5 628b418 42fb4a5 ad908e5 628b418 ad908e5 42fb4a5 ad908e5 f716063 42fb4a5 f716063 42fb4a5 628b418 b7fc0b0 628b418 f716063 0fa6dba f716063 b7fc0b0 f716063 972f767 628b418 f716063 b7fc0b0 f716063 b7fc0b0 f716063 972f767 628b418 b7fc0b0 972f767 f716063 0fa6dba f716063 0fa6dba f716063 0fa6dba f716063 0fa6dba f716063 b7fc0b0 f716063 628b418 f716063 b7fc0b0 f716063 b7fc0b0 0fa6dba f716063 628b418 b7fc0b0 628b418 0fa6dba 628b418 b7fc0b0 f716063 b7fc0b0 628b418 0fa6dba b7fc0b0 972f767 f716063 b7fc0b0 f716063 9ddf4d8 0fa6dba 9ddf4d8 972f767 0fa6dba 9ddf4d8 0fa6dba 9ddf4d8 0fa6dba 972f767 0fa6dba 972f767 0fa6dba 972f767 f716063 b7fc0b0 f716063 9ddf4d8 f716063 b7fc0b0 628b418 b7fc0b0 0fa6dba 628b418 b7fc0b0 628b418 0fa6dba 628b418 0fa6dba b7fc0b0 628b418 0fa6dba 628b418 b7fc0b0 628b418 0fa6dba 628b418 c2e9ecc 0fa6dba b7fc0b0 0fa6dba b7fc0b0 628b418 b7fc0b0 628b418 0fa6dba 628b418 0fa6dba b7fc0b0 c2e9ecc 0fa6dba 628b418 b7fc0b0 8dbf894 0fa6dba 628b418 b7fc0b0 628b418 0fa6dba 628b418 b7fc0b0 628b418 0fa6dba 628b418 0fa6dba 628b418 0fa6dba 42fb4a5 628b418 42fb4a5 628b418 b7fc0b0 0fa6dba 628b418 0fa6dba f716063 0fa6dba f716063 0fa6dba 972f767 f716063 0fa6dba e35db11 0fa6dba 972f767 b7fc0b0 972f767 b7fc0b0 972f767 b7fc0b0 570ad54 b7fc0b0 972f767 b7fc0b0 5ffdcee c2e9ecc b7fc0b0 0fa6dba c2e9ecc b7fc0b0 0fa6dba b7fc0b0 0fa6dba b7fc0b0 0fa6dba b7fc0b0 0fa6dba b7fc0b0 0fa6dba e35db11 0fa6dba b7fc0b0 0fa6dba b7fc0b0 0fa6dba b7fc0b0 0fa6dba b7fc0b0 0fa6dba b7fc0b0 0fa6dba b7fc0b0 0fa6dba b7fc0b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 |
"""
VibeVoice Simple Chat Interface - Streamlined Audio Generation Demo
"""
import argparse
import os
import tempfile
import time
import threading
import subprocess
import numpy as np
import gradio as gr
import librosa
import soundfile as sf
import torch
from pathlib import Path
from typing import Iterator, Dict, Any
# Clone and setup VibeVoice if not already present
vibevoice_dir = Path('./VibeVoice')
if not vibevoice_dir.exists():
print("Cloning VibeVoice repository...")
subprocess.run(['git', 'clone', 'https://github.com/microsoft/VibeVoice.git'], check=True)
print("Installing VibeVoice...")
subprocess.run(['pip', 'install', '-e', './VibeVoice'], check=True)
print("Installing wheel (required for flash-attn)...")
subprocess.run(['pip', 'install', 'wheel'], check=True)
print("Installing flash-attn...")
try:
subprocess.run(['pip', 'install', 'flash-attn', '--no-build-isolation'], check=True)
except subprocess.CalledProcessError:
print("Warning: flash-attn installation failed. Continuing without it...")
# Add the VibeVoice directory to path
import sys
sys.path.insert(0, str(vibevoice_dir))
# Import VibeVoice modules
try:
from vibevoice.modular.configuration_vibevoice import VibeVoiceConfig
from vibevoice.modular.modeling_vibevoice_inference import VibeVoiceForConditionalGenerationInference
from vibevoice.processor.vibevoice_processor import VibeVoiceProcessor
from vibevoice.modular.streamer import AudioStreamer
except ImportError:
try:
import importlib.util
def load_module(module_name, file_path):
spec = importlib.util.spec_from_file_location(module_name, file_path)
module = importlib.util.module_from_spec(spec)
sys.modules[module_name] = module
spec.loader.exec_module(module)
return module
config_module = load_module(
"vibevoice_config",
vibevoice_dir / "modular" / "configuration_vibevoice.py"
)
VibeVoiceConfig = config_module.VibeVoiceConfig
model_module = load_module(
"vibevoice_model",
vibevoice_dir / "modular" / "modeling_vibevoice_inference.py"
)
VibeVoiceForConditionalGenerationInference = model_module.VibeVoiceForConditionalGenerationInference
processor_module = load_module(
"vibevoice_processor",
vibevoice_dir / "processor" / "vibevoice_processor.py"
)
VibeVoiceProcessor = processor_module.VibeVoiceProcessor
streamer_module = load_module(
"vibevoice_streamer",
vibevoice_dir / "modular" / "streamer.py"
)
AudioStreamer = streamer_module.AudioStreamer
except Exception as e:
raise ImportError(
f"VibeVoice module not found. Error: {e}\n"
"Please ensure VibeVoice is properly installed:\n"
"git clone https://github.com/microsoft/VibeVoice.git\n"
"cd VibeVoice/\n"
"pip install -e .\n"
)
from transformers.utils import logging
from transformers import set_seed
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
class VibeVoiceChat:
def __init__(self, model_path: str, device: str = "cuda", inference_steps: int = 5):
"""Initialize the VibeVoice chat model."""
self.model_path = model_path
self.device = device if torch.cuda.is_available() else "cpu"
self.inference_steps = inference_steps
self.is_generating = False
self.stop_generation = False
self.current_streamer = None
# Check GPU availability and CUDA version
if torch.cuda.is_available():
print(f"β GPU detected: {torch.cuda.get_device_name(0)}")
print(f" Memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.2f} GB")
print(f" CUDA Version: {torch.version.cuda}")
print(f" PyTorch CUDA: {torch.cuda.is_available()}")
# Set memory fraction to avoid OOM
torch.cuda.set_per_process_memory_fraction(0.95)
# Enable TF32 for faster computation on Ampere GPUs
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
else:
print("β No GPU detected, using CPU (generation will be VERY slow)")
print(" For faster generation, ensure CUDA is properly installed")
self.load_model()
self.setup_voice_presets()
def load_model(self):
"""Load the VibeVoice model and processor."""
print(f"Loading model from {self.model_path}")
start_time = time.time()
self.processor = VibeVoiceProcessor.from_pretrained(self.model_path)
if torch.cuda.is_available():
print("Loading model with GPU acceleration...")
try:
self.model = VibeVoiceForConditionalGenerationInference.from_pretrained(
self.model_path,
torch_dtype=torch.bfloat16,
device_map='cuda:0',
attn_implementation="flash_attention_2",
low_cpu_mem_usage=True,
)
print("β Flash Attention 2 enabled for faster generation")
except Exception as e:
print(f"Warning: Could not load with flash_attention_2: {e}")
print("Falling back to standard attention...")
self.model = VibeVoiceForConditionalGenerationInference.from_pretrained(
self.model_path,
torch_dtype=torch.bfloat16,
device_map='cuda:0',
low_cpu_mem_usage=True,
)
else:
print("Loading model on CPU (this will be slow)...")
self.model = VibeVoiceForConditionalGenerationInference.from_pretrained(
self.model_path,
torch_dtype=torch.float32,
device_map='cpu',
low_cpu_mem_usage=True,
)
self.model.eval()
# Configure noise scheduler for faster inference
self.model.model.noise_scheduler = self.model.model.noise_scheduler.from_config(
self.model.model.noise_scheduler.config,
algorithm_type='sde-dpmsolver++',
beta_schedule='squaredcos_cap_v2'
)
self.model.set_ddpm_inference_steps(num_steps=self.inference_steps)
load_time = time.time() - start_time
print(f"β Model loaded in {load_time:.2f} seconds")
# Print model device
if hasattr(self.model, 'device'):
print(f"Model device: {self.model.device}")
def setup_voice_presets(self):
"""Setup voice presets from the voices directory."""
voices_dir = os.path.join(os.path.dirname(__file__), "voices")
# Create voices directory if it doesn't exist
if not os.path.exists(voices_dir):
os.makedirs(voices_dir)
print(f"Created voices directory at {voices_dir}")
print("Please add voice sample files (.wav, .mp3, etc.) to this directory")
self.available_voices = {}
audio_extensions = ('.wav', '.mp3', '.flac', '.ogg', '.m4a', '.aac')
# Scan for audio files
for file in os.listdir(voices_dir):
if file.lower().endswith(audio_extensions):
name = os.path.splitext(file)[0]
self.available_voices[name] = os.path.join(voices_dir, file)
# Sort voices alphabetically
self.available_voices = dict(sorted(self.available_voices.items()))
if not self.available_voices:
print(f"Warning: No voice files found in {voices_dir}")
print("Using default (zero) voice samples. Add audio files to the voices directory for better results.")
# Add a default "None" option
self.available_voices = {"Default": None}
else:
print(f"Found {len(self.available_voices)} voice presets: {', '.join(self.available_voices.keys())}")
def read_audio(self, audio_path: str, target_sr: int = 24000) -> np.ndarray:
"""Read and preprocess audio file."""
try:
wav, sr = sf.read(audio_path)
if len(wav.shape) > 1:
wav = np.mean(wav, axis=1)
if sr != target_sr:
wav = librosa.resample(wav, orig_sr=sr, target_sr=target_sr)
return wav
except Exception as e:
print(f"Error reading audio {audio_path}: {e}")
return np.zeros(24000) # Return 1 second of silence as fallback
def format_script(self, message: str, num_speakers: int = 2) -> str:
"""Format input message into a script with speaker assignments."""
lines = message.strip().split('\n')
formatted_lines = []
for i, line in enumerate(lines):
line = line.strip()
if not line:
continue
# Check if already formatted
if line.startswith('Speaker ') and ':' in line:
formatted_lines.append(line)
else:
# Auto-assign speakers in rotation
speaker_id = i % num_speakers
formatted_lines.append(f"Speaker {speaker_id}: {line}")
return '\n'.join(formatted_lines)
def generate_audio_stream(
self,
message: str,
history: list,
voice_1: str,
voice_2: str,
num_speakers: int,
cfg_scale: float
) -> Iterator[tuple]:
"""Generate audio stream from text input."""
try:
self.stop_generation = False
self.is_generating = True
# Validate inputs
if not message.strip():
yield None
return
# Format the script
formatted_script = self.format_script(message, num_speakers)
print(f"Formatted script:\n{formatted_script}")
print(f"Using device: {self.device}")
# Start timing
start_time = time.time()
# Select voices based on number of speakers
selected_voices = []
if voice_1 and voice_1 != "Default":
selected_voices.append(voice_1)
if num_speakers > 1 and voice_2 and voice_2 != "Default":
selected_voices.append(voice_2)
# Load voice samples
voice_samples = []
for i in range(num_speakers):
# Use the appropriate voice for each speaker
if i < len(selected_voices):
voice_name = selected_voices[i]
if voice_name in self.available_voices and self.available_voices[voice_name]:
audio_data = self.read_audio(self.available_voices[voice_name])
else:
audio_data = np.zeros(24000) # Default silence
else:
# Use first voice or default if not enough voices selected
if selected_voices and selected_voices[0] in self.available_voices and self.available_voices[selected_voices[0]]:
audio_data = self.read_audio(self.available_voices[selected_voices[0]])
else:
audio_data = np.zeros(24000) # Default silence
voice_samples.append(audio_data)
print(f"Loaded {len(voice_samples)} voice samples")
# Process inputs
inputs = self.processor(
text=[formatted_script],
voice_samples=[voice_samples],
padding=True,
return_tensors="pt",
return_attention_mask=True,
)
# Move to device and ensure correct dtype
if self.device == "cuda":
inputs = {k: v.to(self.device) if torch.is_tensor(v) else v for k, v in inputs.items()}
print(f"β Inputs moved to GPU")
# Check GPU memory
if torch.cuda.is_available():
print(f"GPU memory allocated: {torch.cuda.memory_allocated() / 1e9:.2f} GB")
# Create audio streamer
audio_streamer = AudioStreamer(
batch_size=1,
stop_signal=None,
timeout=None
)
self.current_streamer = audio_streamer
# Start generation in separate thread
generation_thread = threading.Thread(
target=self._generate_with_streamer,
args=(inputs, cfg_scale, audio_streamer)
)
generation_thread.start()
# Wait briefly for generation to start
time.sleep(1)
# Stream audio chunks
sample_rate = 24000
audio_stream = audio_streamer.get_stream(0)
all_audio_chunks = []
chunk_count = 0
for audio_chunk in audio_stream:
if self.stop_generation:
audio_streamer.end()
break
chunk_count += 1
# Convert to numpy
if torch.is_tensor(audio_chunk):
if audio_chunk.dtype == torch.bfloat16:
audio_chunk = audio_chunk.float()
audio_np = audio_chunk.cpu().numpy().astype(np.float32)
else:
audio_np = np.array(audio_chunk, dtype=np.float32)
# Ensure 1D
if len(audio_np.shape) > 1:
audio_np = audio_np.squeeze()
# Convert to 16-bit
audio_16bit = self.convert_to_16_bit_wav(audio_np)
all_audio_chunks.append(audio_16bit)
# Yield accumulated audio
if all_audio_chunks:
complete_audio = np.concatenate(all_audio_chunks)
yield (sample_rate, complete_audio)
# Wait for generation to complete
generation_thread.join(timeout=5.0)
# Final yield with complete audio
if all_audio_chunks:
complete_audio = np.concatenate(all_audio_chunks)
generation_time = time.time() - start_time
audio_duration = len(complete_audio) / sample_rate
print(f"β Generation complete:")
print(f" Time taken: {generation_time:.2f} seconds")
print(f" Audio duration: {audio_duration:.2f} seconds")
print(f" Real-time factor: {audio_duration/generation_time:.2f}x")
yield (sample_rate, complete_audio)
self.current_streamer = None
self.is_generating = False
except Exception as e:
print(f"Error in generation: {e}")
import traceback
traceback.print_exc()
self.is_generating = False
self.current_streamer = None
yield None
def _generate_with_streamer(self, inputs, cfg_scale, audio_streamer):
"""Helper method to run generation with streamer."""
try:
def check_stop():
return self.stop_generation
# Use torch.cuda.amp for mixed precision if available
if self.device == "cuda" and torch.cuda.is_available():
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
outputs = self.model.generate(
**inputs,
max_new_tokens=None,
cfg_scale=cfg_scale,
tokenizer=self.processor.tokenizer,
generation_config={'do_sample': False},
audio_streamer=audio_streamer,
stop_check_fn=check_stop,
verbose=False,
refresh_negative=True,
)
else:
outputs = self.model.generate(
**inputs,
max_new_tokens=None,
cfg_scale=cfg_scale,
tokenizer=self.processor.tokenizer,
generation_config={'do_sample': False},
audio_streamer=audio_streamer,
stop_check_fn=check_stop,
verbose=False,
refresh_negative=True,
)
except Exception as e:
print(f"Error in generation thread: {e}")
import traceback
traceback.print_exc()
audio_streamer.end()
def convert_to_16_bit_wav(self, data):
"""Convert audio data to 16-bit WAV format."""
if torch.is_tensor(data):
data = data.detach().cpu().numpy()
data = np.array(data)
if np.max(np.abs(data)) > 1.0:
data = data / np.max(np.abs(data))
data = (data * 32767).astype(np.int16)
return data
def stop_audio_generation(self):
"""Stop the current audio generation."""
self.stop_generation = True
if self.current_streamer:
try:
self.current_streamer.end()
except:
pass
def create_chat_interface(chat_instance: VibeVoiceChat):
"""Create a simplified Gradio ChatInterface for VibeVoice."""
# Get available voices
voice_options = list(chat_instance.available_voices.keys())
if not voice_options:
voice_options = ["Default"]
default_voice_1 = voice_options[0] if len(voice_options) > 0 else "Default"
default_voice_2 = voice_options[1] if len(voice_options) > 1 else voice_options[0]
# Define the chat function that returns audio
def chat_fn(message: str, history: list, voice_1: str, voice_2: str, num_speakers: int, cfg_scale: float):
"""Process chat message and generate audio response."""
# Extract text from message
if isinstance(message, dict):
text = message.get("text", "")
else:
text = message
if not text.strip():
return ""
try:
# Generate audio stream
audio_generator = chat_instance.generate_audio_stream(
text, history, voice_1, voice_2, num_speakers, cfg_scale
)
# Collect all audio data
audio_data = None
for audio_chunk in audio_generator:
if audio_chunk is not None:
audio_data = audio_chunk
# Return audio file path or error message
if audio_data:
# Save audio to temporary file
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_file:
sample_rate, audio_array = audio_data
sf.write(tmp_file.name, audio_array, sample_rate)
# Return the file path directly
return tmp_file.name
else:
return "Failed to generate audio"
except Exception as e:
print(f"Error in chat_fn: {e}")
import traceback
traceback.print_exc()
return f"Error: {str(e)}"
# Create the interface using Blocks for more control
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="purple"), fill_height=True) as interface:
gr.Markdown("# ποΈ VibeVoice Chat\nGenerate natural dialogue audio with AI voices")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Voice & Generation Settings")
voice_1 = gr.Dropdown(
choices=voice_options,
value=default_voice_1,
label="Voice 1",
info="Select voice for Speaker 0"
)
voice_2 = gr.Dropdown(
choices=voice_options,
value=default_voice_2,
label="Voice 2",
info="Select voice for Speaker 1 (if using multiple speakers)"
)
num_speakers = gr.Slider(
minimum=1,
maximum=2,
value=2,
step=1,
label="Number of Speakers",
info="Number of speakers in the dialogue"
)
cfg_scale = gr.Slider(
minimum=1.0,
maximum=2.0,
value=1.3,
step=0.05,
label="CFG Scale",
info="Guidance strength (higher = more adherence to text)"
)
with gr.Column(scale=2):
chatbot = gr.Chatbot(
label="Conversation",
height=400,
type="messages",
elem_id="chatbot"
)
msg = gr.Textbox(
label="Message",
placeholder="Type your message or paste a script...",
lines=3
)
audio_output = gr.Audio(
label="Generated Audio",
type="filepath",
autoplay=True,
visible=False
)
with gr.Row():
submit = gr.Button("π΅ Generate Audio", variant="primary")
clear = gr.Button("ποΈ Clear")
# Example messages
gr.Examples(
examples=[
"Hello! How are you doing today?",
"Speaker 0: Welcome to our podcast!\nSpeaker 1: Thanks for having me!",
"Tell me an interesting fact about space.",
"What's your favorite type of music and why?",
],
inputs=msg,
label="Example Messages"
)
# Set up event handlers
def process_and_display(message, history, voice_1, voice_2, num_speakers, cfg_scale):
"""Process message and update both chatbot and audio."""
# Add user message to history
history = history or []
history.append({"role": "user", "content": message})
# Generate audio
audio_path = chat_fn(message, history, voice_1, voice_2, num_speakers, cfg_scale)
# Add assistant response with audio
if audio_path and audio_path.endswith('.wav'):
history.append({"role": "assistant", "content": f"π΅ Audio generated successfully"})
return history, audio_path, gr.update(visible=True), ""
else:
history.append({"role": "assistant", "content": audio_path or "Failed to generate audio"})
return history, None, gr.update(visible=False), ""
submit.click(
fn=process_and_display,
inputs=[msg, chatbot, voice_1, voice_2, num_speakers, cfg_scale],
outputs=[chatbot, audio_output, audio_output, msg],
queue=True
)
msg.submit(
fn=process_and_display,
inputs=[msg, chatbot, voice_1, voice_2, num_speakers, cfg_scale],
outputs=[chatbot, audio_output, audio_output, msg],
queue=True
)
clear.click(lambda: ([], None, gr.update(visible=False)), outputs=[chatbot, audio_output, audio_output])
return interface
def parse_args():
parser = argparse.ArgumentParser(description="VibeVoice Chat Interface")
parser.add_argument(
"--model_path",
type=str,
default="microsoft/VibeVoice-1.5B",
help="Path to the VibeVoice model",
)
parser.add_argument(
"--device",
type=str,
default="cuda" if torch.cuda.is_available() else "cpu",
help="Device for inference",
)
parser.add_argument(
"--inference_steps",
type=int,
default=5,
help="Number of DDPM inference steps (lower = faster, higher = better quality)",
)
return parser.parse_args()
def main():
"""Main function to run the chat interface."""
args = parse_args()
set_seed(42)
print("ποΈ Initializing VibeVoice Chat Interface...")
# Initialize chat instance
chat_instance = VibeVoiceChat(
model_path=args.model_path,
device=args.device,
inference_steps=args.inference_steps
)
# Create interface
interface = create_chat_interface(chat_instance)
print(f"π Launching chat interface")
print(f"π Model: {args.model_path}")
print(f"π» Device: {chat_instance.device}")
print(f"π’ Inference steps: {args.inference_steps}")
print(f"π Available voices: {len(chat_instance.available_voices)}")
if chat_instance.device == "cpu":
print("\nβ οΈ WARNING: Running on CPU - generation will be VERY slow!")
print(" For faster generation, ensure you have:")
print(" 1. NVIDIA GPU with CUDA support")
print(" 2. PyTorch with CUDA installed: pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118")
# Launch the interface
interface.queue(max_size=10).launch(
show_error=True,
quiet=False,
)
if __name__ == "__main__":
main() |