diff --git "a/app.py" "b/app.py"
--- "a/app.py"
+++ "b/app.py"
@@ -1,4958 +1,71 @@
-import os
-import re
-from http import HTTPStatus
-from typing import Dict, List, Optional, Tuple
-import base64
-import mimetypes
-import PyPDF2
-import docx
-import cv2
-import numpy as np
-from PIL import Image
-import pytesseract
-import requests
-from urllib.parse import urlparse, urljoin
-from bs4 import BeautifulSoup
-import html2text
-import json
-import time
-import webbrowser
-import urllib.parse
-import copy
-import html
-
-import gradio as gr
-from huggingface_hub import InferenceClient
-from tavily import TavilyClient
-from huggingface_hub import HfApi
-import tempfile
-from openai import OpenAI
-from mistralai import Mistral
-
-# Gradio supported languages for syntax highlighting
-GRADIO_SUPPORTED_LANGUAGES = [
- "python", "c", "cpp", "markdown", "latex", "json", "html", "css", "javascript", "jinja2", "typescript", "yaml", "dockerfile", "shell", "r", "sql", "sql-msSQL", "sql-mySQL", "sql-mariaDB", "sql-sqlite", "sql-cassandra", "sql-plSQL", "sql-hive", "sql-pgSQL", "sql-gql", "sql-gpSQL", "sql-sparkSQL", "sql-esper", None
-]
-
-def get_gradio_language(language):
- # Map composite options to a supported syntax highlighting
- if language == "streamlit":
- return "python"
- if language == "gradio":
- return "python"
- return language if language in GRADIO_SUPPORTED_LANGUAGES else None
-
-# Search/Replace Constants
-SEARCH_START = "<<<<<<< SEARCH"
-DIVIDER = "======="
-REPLACE_END = ">>>>>>> REPLACE"
-
-# Configuration
-HTML_SYSTEM_PROMPT = """ONLY USE HTML, CSS AND JAVASCRIPT. If you want to use ICON make sure to import the library first. Try to create the best UI possible by using only HTML, CSS and JAVASCRIPT. MAKE IT RESPONSIVE USING MODERN CSS. Use as much as you can modern CSS for the styling, if you can't do something with modern CSS, then use custom CSS. Also, try to elaborate as much as you can, to create something unique. ALWAYS GIVE THE RESPONSE INTO A SINGLE HTML FILE
-
-For website redesign tasks:
-- Use the provided original HTML code as the starting point for redesign
-- Preserve all original content, structure, and functionality
-- Keep the same semantic HTML structure but enhance the styling
-- Reuse all original images and their URLs from the HTML code
-- Create a modern, responsive design with improved typography and spacing
-- Use modern CSS frameworks and design patterns
-- Ensure accessibility and mobile responsiveness
-- Maintain the same navigation and user flow
-- Enhance the visual design while keeping the original layout structure
-
-If an image is provided, analyze it and use the visual information to better understand the user's requirements.
-
-Always respond with code that can be executed or rendered directly.
-
-Always output only the HTML code inside a ```html ... ``` code block, and do not include any explanations or extra text. Do NOT add the language name at the top of the code output."""
-
-# Stricter prompt for GLM-4.5V to ensure a complete, runnable HTML document with no escaped characters
-GLM45V_HTML_SYSTEM_PROMPT = """You are an expert front-end developer.
-
-Output a COMPLETE, STANDALONE HTML document that renders directly in a browser.
-
-Hard constraints:
-- DO NOT use React, ReactDOM, JSX, Babel, Vue, Angular, Svelte, or any SPA framework.
-- Use ONLY plain HTML, CSS, and vanilla JavaScript.
-- Allowed external resources: Tailwind CSS CDN, Font Awesome CDN, Google Fonts.
-- Do NOT escape characters (no \\n, \\t, or escaped quotes). Output raw HTML/JS/CSS.
-
-Structural requirements:
-- Include , ,
, and with proper nesting
-- Include required tags for any CSS you reference (e.g., Tailwind, Font Awesome, Google Fonts)
-- Keep everything in ONE file; inline CSS/JS as needed
-
-Return ONLY the code inside a single ```html ... ``` code block. No additional text before or after.
-"""
-
-TRANSFORMERS_JS_SYSTEM_PROMPT = """You are an expert web developer creating a transformers.js application. You will generate THREE separate files: index.html, index.js, and style.css.
-
-IMPORTANT: You MUST output ALL THREE files in the following format:
-
-```html
-
-```
-
-```javascript
-// index.js content here
-```
-
-```css
-/* style.css content here */
-```
-
-Requirements:
-1. Create a modern, responsive web application using transformers.js
-2. Use the transformers.js library for AI/ML functionality
-3. Create a clean, professional UI with good user experience
-4. Make the application fully responsive for mobile devices
-5. Use modern CSS practices and JavaScript ES6+ features
-6. Include proper error handling and loading states
-7. Follow accessibility best practices
-
-The index.html should contain the basic HTML structure and link to the CSS and JS files.
-The index.js should contain all the JavaScript logic including transformers.js integration.
-The style.css should contain all the styling for the application.
-
-Always output only the three code blocks as shown above, and do not include any explanations or extra text."""
-
-SVELTE_SYSTEM_PROMPT = """You are an expert Svelte developer creating a modern Svelte application. You will generate ONLY the custom files that need user-specific content for the user's requested application.
-
-IMPORTANT: You MUST output files in the following format. Generate ONLY the files needed for the user's specific request:
-
-```svelte
-
-```
-
-```css
-/* src/app.css content here */
-```
-
-If you need additional components for the user's specific app, add them like:
-```svelte
-
-```
-
-Requirements:
-1. Create a modern, responsive Svelte application based on the user's specific request
-2. Use TypeScript for better type safety
-3. Create a clean, professional UI with good user experience
-4. Make the application fully responsive for mobile devices
-5. Use modern CSS practices and Svelte best practices
-6. Include proper error handling and loading states
-7. Follow accessibility best practices
-8. Use Svelte's reactive features effectively
-9. Include proper component structure and organization
-10. Generate ONLY components that are actually needed for the user's requested application
-
-Files you should generate:
-- src/App.svelte: Main application component (ALWAYS required)
-- src/app.css: Global styles (ALWAYS required)
-- src/lib/[ComponentName].svelte: Additional components (ONLY if needed for the user's specific app)
-
-The other files (index.html, package.json, vite.config.ts, tsconfig files, svelte.config.js, src/main.ts, src/vite-env.d.ts) are provided by the Svelte template and don't need to be generated.
-
-Always output only the two code blocks as shown above, and do not include any explanations or extra text."""
-
-SVELTE_SYSTEM_PROMPT_WITH_SEARCH = """You are an expert Svelte developer creating a modern Svelte application. You have access to real-time web search. When needed, use web search to find the latest information, best practices, or specific Svelte technologies.
-
-You will generate ONLY the custom files that need user-specific content.
-
-IMPORTANT: You MUST output ONLY the custom files in the following format:
-
-```svelte
-
-```
-
-```css
-/* src/app.css content here -->
-```
-
-Requirements:
-1. Create a modern, responsive Svelte application
-2. Use TypeScript for better type safety
-3. Create a clean, professional UI with good user experience
-4. Make the application fully responsive for mobile devices
-5. Use modern CSS practices and Svelte best practices
-6. Include proper error handling and loading states
-7. Follow accessibility best practices
-8. Use Svelte's reactive features effectively
-9. Include proper component structure and organization
-10. Use web search to find the latest Svelte patterns, libraries, and best practices
-
-The files you generate are:
-- src/App.svelte: Main application component (your custom app logic)
-- src/app.css: Global styles (your custom styling)
-
-The other files (index.html, package.json, vite.config.ts, tsconfig files, svelte.config.js, src/main.ts, src/vite-env.d.ts) are provided by the Svelte template and don't need to be generated.
-
-Always output only the two code blocks as shown above, and do not include any explanations or extra text."""
-
-TRANSFORMERS_JS_SYSTEM_PROMPT_WITH_SEARCH = """You are an expert web developer creating a transformers.js application. You have access to real-time web search. When needed, use web search to find the latest information, best practices, or specific technologies for transformers.js.
-
-You will generate THREE separate files: index.html, index.js, and style.css.
-
-IMPORTANT: You MUST output ALL THREE files in the following format:
-
-```html
-
-```
-
-```javascript
-// index.js content here
-```
-
-```css
-/* style.css content here */
-```
-
-Requirements:
-1. Create a modern, responsive web application using transformers.js
-2. Use the transformers.js library for AI/ML functionality
-3. Use web search to find current best practices and latest transformers.js features
-4. Create a clean, professional UI with good user experience
-5. Make the application fully responsive for mobile devices
-6. Use modern CSS practices and JavaScript ES6+ features
-7. Include proper error handling and loading states
-8. Follow accessibility best practices
-
-The index.html should contain the basic HTML structure and link to the CSS and JS files.
-The index.js should contain all the JavaScript logic including transformers.js integration.
-The style.css should contain all the styling for the application.
-
-Always output only the three code blocks as shown above, and do not include any explanations or extra text."""
-
-GENERIC_SYSTEM_PROMPT = """You are an expert {language} developer. Write clean, idiomatic, and runnable {language} code for the user's request. If possible, include comments and best practices. Output ONLY the code inside a ``` code block, and do not include any explanations or extra text. If the user provides a file or other context, use it as a reference. If the code is for a script or app, make it as self-contained as possible. Do NOT add the language name at the top of the code output."""
-
-# System prompt with search capability
-HTML_SYSTEM_PROMPT_WITH_SEARCH = """You are an expert front-end developer. You have access to real-time web search.
-
-Output a COMPLETE, STANDALONE HTML document that renders directly in a browser. Requirements:
-- Include , , , and with proper nesting
-- Include all required and
-
-{REPLACE_END}
-```
-
-Example Fixing Dependencies (requirements.txt):
-```
-Adding missing dependency to fix ImportError...
-=== requirements.txt ===
-{SEARCH_START}
-gradio
-streamlit
-{DIVIDER}
-gradio
-streamlit
-mistral-common
-{REPLACE_END}
-```
-
-Example Deleting Code:
-```
-Removing the paragraph...
-{SEARCH_START}
-
This paragraph will be deleted.
-{DIVIDER}
-{REPLACE_END}
-```"""
-
-# Follow-up system prompt for modifying existing transformers.js applications
-TransformersJSFollowUpSystemPrompt = f"""You are an expert web developer modifying an existing transformers.js application.
-The user wants to apply changes based on their request.
-You MUST output ONLY the changes required using the following SEARCH/REPLACE block format. Do NOT output the entire file.
-Explain the changes briefly *before* the blocks if necessary, but the code changes THEMSELVES MUST be within the blocks.
-
-IMPORTANT: When the user reports an ERROR MESSAGE, analyze it carefully to determine which file needs fixing:
-- JavaScript errors/module loading issues → Fix index.js
-- HTML rendering/DOM issues → Fix index.html
-- Styling/visual issues → Fix style.css
-- CDN/library loading errors → Fix script tags in index.html
-
-The transformers.js application consists of three files: index.html, index.js, and style.css.
-When making changes, specify which file you're modifying by starting your search/replace blocks with the file name.
-
-Format Rules:
-1. Start with {SEARCH_START}
-2. Provide the exact lines from the current code that need to be replaced.
-3. Use {DIVIDER} to separate the search block from the replacement.
-4. Provide the new lines that should replace the original lines.
-5. End with {REPLACE_END}
-6. You can use multiple SEARCH/REPLACE blocks if changes are needed in different parts of the file.
-7. To insert code, use an empty SEARCH block (only {SEARCH_START} and {DIVIDER} on their lines) if inserting at the very beginning, otherwise provide the line *before* the insertion point in the SEARCH block and include that line plus the new lines in the REPLACE block.
-8. To delete code, provide the lines to delete in the SEARCH block and leave the REPLACE block empty (only {DIVIDER} and {REPLACE_END} on their lines).
-9. IMPORTANT: The SEARCH block must *exactly* match the current code, including indentation and whitespace.
-
-Example Modifying HTML:
-```
-Changing the title in index.html...
-=== index.html ===
-{SEARCH_START}
- Old Title
-{DIVIDER}
- New Title
-{REPLACE_END}
-```
-
-Example Modifying JavaScript:
-```
-Adding a new function to index.js...
-=== index.js ===
-{SEARCH_START}
-// Existing code
-{DIVIDER}
-// Existing code
-
-function newFunction() {{
- console.log("New function added");
-}}
-{REPLACE_END}
-```
-
-Example Modifying CSS:
-```
-Changing background color in style.css...
-=== style.css ===
-{SEARCH_START}
-body {{
- background-color: white;
-}}
-{DIVIDER}
-body {{
- background-color: #f0f0f0;
-}}
-{REPLACE_END}
-```
-
-Example Fixing Library Loading Error:
-```
-Fixing transformers.js CDN loading error...
-=== index.html ===
-{SEARCH_START}
-
-{DIVIDER}
-
-{REPLACE_END}
-```"""
-
-# Available models
-AVAILABLE_MODELS = [
- {
- "name": "Moonshot Kimi-K2",
- "id": "moonshotai/Kimi-K2-Instruct",
- "description": "Moonshot AI Kimi-K2-Instruct model for code generation and general tasks"
- },
- {
- "name": "Kimi K2 Turbo (Preview)",
- "id": "kimi-k2-turbo-preview",
- "description": "Moonshot AI Kimi K2 Turbo via OpenAI-compatible API"
- },
- {
- "name": "DeepSeek V3",
- "id": "deepseek-ai/DeepSeek-V3-0324",
- "description": "DeepSeek V3 model for code generation"
- },
- {
- "name": "DeepSeek R1",
- "id": "deepseek-ai/DeepSeek-R1-0528",
- "description": "DeepSeek R1 model for code generation"
- },
- {
- "name": "ERNIE-4.5-VL",
- "id": "baidu/ERNIE-4.5-VL-424B-A47B-Base-PT",
- "description": "ERNIE-4.5-VL model for multimodal code generation with image support"
- },
- {
- "name": "MiniMax M1",
- "id": "MiniMaxAI/MiniMax-M1-80k",
- "description": "MiniMax M1 model for code generation and general tasks"
- },
- {
- "name": "Qwen3-235B-A22B",
- "id": "Qwen/Qwen3-235B-A22B",
- "description": "Qwen3-235B-A22B model for code generation and general tasks"
- },
- {
- "name": "SmolLM3-3B",
- "id": "HuggingFaceTB/SmolLM3-3B",
- "description": "SmolLM3-3B model for code generation and general tasks"
- },
- {
- "name": "GLM-4.5",
- "id": "zai-org/GLM-4.5",
- "description": "GLM-4.5 model with thinking capabilities for advanced code generation"
- },
- {
- "name": "GLM-4.5V",
- "id": "zai-org/GLM-4.5V",
- "description": "GLM-4.5V multimodal model with image understanding for code generation"
- },
- {
- "name": "GLM-4.1V-9B-Thinking",
- "id": "THUDM/GLM-4.1V-9B-Thinking",
- "description": "GLM-4.1V-9B-Thinking model for multimodal code generation with image support"
- },
- {
- "name": "Qwen3-235B-A22B-Instruct-2507",
- "id": "Qwen/Qwen3-235B-A22B-Instruct-2507",
- "description": "Qwen3-235B-A22B-Instruct-2507 model for code generation and general tasks"
- },
- {
- "name": "Qwen3-Coder-480B-A35B-Instruct",
- "id": "Qwen/Qwen3-Coder-480B-A35B-Instruct",
- "description": "Qwen3-Coder-480B-A35B-Instruct model for advanced code generation and programming tasks"
- },
- {
- "name": "Qwen3-32B",
- "id": "Qwen/Qwen3-32B",
- "description": "Qwen3-32B model for code generation and general tasks"
- },
- {
- "name": "Qwen3-4B-Instruct-2507",
- "id": "Qwen/Qwen3-4B-Instruct-2507",
- "description": "Qwen3-4B-Instruct-2507 model for code generation and general tasks"
- },
- {
- "name": "Qwen3-4B-Thinking-2507",
- "id": "Qwen/Qwen3-4B-Thinking-2507",
- "description": "Qwen3-4B-Thinking-2507 model with advanced reasoning capabilities for code generation and general tasks"
- },
- {
- "name": "Qwen3-235B-A22B-Thinking",
- "id": "Qwen/Qwen3-235B-A22B-Thinking-2507",
- "description": "Qwen3-235B-A22B-Thinking model with advanced reasoning capabilities"
- },
- {
- "name": "Qwen3-30B-A3B-Instruct-2507",
- "id": "qwen3-30b-a3b-instruct-2507",
- "description": "Qwen3-30B-A3B-Instruct model via Alibaba Cloud DashScope API"
- },
- {
- "name": "Qwen3-30B-A3B-Thinking-2507",
- "id": "qwen3-30b-a3b-thinking-2507",
- "description": "Qwen3-30B-A3B-Thinking model with advanced reasoning via Alibaba Cloud DashScope API"
- },
- {
- "name": "Qwen3-Coder-30B-A3B-Instruct",
- "id": "qwen3-coder-30b-a3b-instruct",
- "description": "Qwen3-Coder-30B-A3B-Instruct model for advanced code generation via Alibaba Cloud DashScope API"
- },
- {
- "name": "StepFun Step-3",
- "id": "step-3",
- "description": "StepFun Step-3 model - AI chat assistant by 阶跃星辰 with multilingual capabilities"
- },
- {
- "name": "Codestral 2508",
- "id": "codestral-2508",
- "description": "Mistral Codestral model - specialized for code generation and programming tasks"
- },
- {
- "name": "Mistral Medium 2508",
- "id": "mistral-medium-2508",
- "description": "Mistral Medium 2508 model via Mistral API for general tasks and coding"
- },
- {
- "name": "Gemini 2.5 Flash",
- "id": "gemini-2.5-flash",
- "description": "Google Gemini 2.5 Flash via OpenAI-compatible API"
- },
- {
- "name": "Gemini 2.5 Pro",
- "id": "gemini-2.5-pro",
- "description": "Google Gemini 2.5 Pro via OpenAI-compatible API"
- },
- {
- "name": "GPT-OSS-120B",
- "id": "openai/gpt-oss-120b",
- "description": "OpenAI GPT-OSS-120B model for advanced code generation and general tasks"
- },
- {
- "name": "GPT-OSS-20B",
- "id": "openai/gpt-oss-20b",
- "description": "OpenAI GPT-OSS-20B model for code generation and general tasks"
- },
- {
- "name": "GPT-5",
- "id": "gpt-5",
- "description": "OpenAI GPT-5 model for advanced code generation and general tasks"
- },
- {
- "name": "Grok-4",
- "id": "grok-4",
- "description": "Grok-4 model via Poe (OpenAI-compatible) for advanced tasks"
- },
- {
- "name": "Claude-Opus-4.1",
- "id": "claude-opus-4.1",
- "description": "Anthropic Claude Opus 4.1 via Poe (OpenAI-compatible)"
- }
-]
-
-# Default model selection
-DEFAULT_MODEL_NAME = "Qwen3-Coder-480B-A35B-Instruct"
-DEFAULT_MODEL = None
-for _m in AVAILABLE_MODELS:
- if _m.get("name") == DEFAULT_MODEL_NAME:
- DEFAULT_MODEL = _m
- break
-if DEFAULT_MODEL is None and AVAILABLE_MODELS:
- DEFAULT_MODEL = AVAILABLE_MODELS[0]
-
-DEMO_LIST = [
- {
- "title": "Todo App",
- "description": "Create a simple todo application with add, delete, and mark as complete functionality"
- },
- {
- "title": "Calculator",
- "description": "Build a basic calculator with addition, subtraction, multiplication, and division"
- },
- {
- "title": "Chat Interface",
- "description": "Build a chat interface with message history and user input"
- },
- {
- "title": "E-commerce Product Card",
- "description": "Create a product card component for an e-commerce website"
- },
- {
- "title": "Login Form",
- "description": "Build a responsive login form with validation"
- },
- {
- "title": "Dashboard Layout",
- "description": "Create a dashboard layout with sidebar navigation and main content area"
- },
- {
- "title": "Data Table",
- "description": "Build a data table with sorting and filtering capabilities"
- },
- {
- "title": "Image Gallery",
- "description": "Create an image gallery with lightbox functionality and responsive grid layout"
- },
- {
- "title": "UI from Image",
- "description": "Upload an image of a UI design and I'll generate the HTML/CSS code for it"
- },
- {
- "title": "Extract Text from Image",
- "description": "Upload an image containing text and I'll extract and process the text content"
- },
- {
- "title": "Website Redesign",
- "description": "Enter a website URL to extract its content and redesign it with a modern, responsive layout"
- },
- {
- "title": "Modify HTML",
- "description": "After generating HTML, ask me to modify it with specific changes using search/replace format"
- },
- {
- "title": "Search/Replace Example",
- "description": "Generate HTML first, then ask: 'Change the title to My New Title' or 'Add a blue background to the body'"
- },
- {
- "title": "Transformers.js App",
- "description": "Create a transformers.js application with AI/ML functionality using the transformers.js library"
- },
- {
- "title": "Svelte App",
- "description": "Create a modern Svelte application with TypeScript, Vite, and responsive design"
- }
-]
-
-# HF Inference Client
-HF_TOKEN = os.getenv('HF_TOKEN')
-if not HF_TOKEN:
- raise RuntimeError("HF_TOKEN environment variable is not set. Please set it to your Hugging Face API token.")
-
-def get_inference_client(model_id, provider="auto"):
- """Return an InferenceClient with provider based on model_id and user selection."""
- if model_id == "qwen3-30b-a3b-instruct-2507":
- # Use DashScope OpenAI client
- return OpenAI(
- api_key=os.getenv("DASHSCOPE_API_KEY"),
- base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
- )
- elif model_id == "qwen3-30b-a3b-thinking-2507":
- # Use DashScope OpenAI client for Thinking model
- return OpenAI(
- api_key=os.getenv("DASHSCOPE_API_KEY"),
- base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
- )
- elif model_id == "qwen3-coder-30b-a3b-instruct":
- # Use DashScope OpenAI client for Coder model
- return OpenAI(
- api_key=os.getenv("DASHSCOPE_API_KEY"),
- base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
- )
- elif model_id == "gpt-5":
- # Use Poe (OpenAI-compatible) client for GPT-5 model
- return OpenAI(
- api_key=os.getenv("POE_API_KEY"),
- base_url="https://api.poe.com/v1"
- )
- elif model_id == "grok-4":
- # Use Poe (OpenAI-compatible) client for Grok-4 model
- return OpenAI(
- api_key=os.getenv("POE_API_KEY"),
- base_url="https://api.poe.com/v1"
- )
- elif model_id == "claude-opus-4.1":
- # Use Poe (OpenAI-compatible) client for Claude-Opus-4.1
- return OpenAI(
- api_key=os.getenv("POE_API_KEY"),
- base_url="https://api.poe.com/v1"
- )
- elif model_id == "step-3":
- # Use StepFun API client for Step-3 model
- return OpenAI(
- api_key=os.getenv("STEP_API_KEY"),
- base_url="https://api.stepfun.com/v1"
- )
- elif model_id == "codestral-2508" or model_id == "mistral-medium-2508":
- # Use Mistral client for Mistral models
- return Mistral(api_key=os.getenv("MISTRAL_API_KEY"))
- elif model_id == "gemini-2.5-flash":
- # Use Google Gemini (OpenAI-compatible) client
- return OpenAI(
- api_key=os.getenv("GEMINI_API_KEY"),
- base_url="https://generativelanguage.googleapis.com/v1beta/openai/",
- )
- elif model_id == "gemini-2.5-pro":
- # Use Google Gemini Pro (OpenAI-compatible) client
- return OpenAI(
- api_key=os.getenv("GEMINI_API_KEY"),
- base_url="https://generativelanguage.googleapis.com/v1beta/openai/",
- )
- elif model_id == "kimi-k2-turbo-preview":
- # Use Moonshot AI (OpenAI-compatible) client for Kimi K2 Turbo (Preview)
- return OpenAI(
- api_key=os.getenv("MOONSHOT_API_KEY"),
- base_url="https://api.moonshot.ai/v1",
- )
- elif model_id == "openai/gpt-oss-120b":
- provider = "cerebras"
- elif model_id == "openai/gpt-oss-20b":
- provider = "groq"
- elif model_id == "moonshotai/Kimi-K2-Instruct":
- provider = "groq"
- elif model_id == "Qwen/Qwen3-235B-A22B":
- provider = "cerebras"
- elif model_id == "Qwen/Qwen3-235B-A22B-Instruct-2507":
- provider = "cerebras"
- elif model_id == "Qwen/Qwen3-32B":
- provider = "cerebras"
- elif model_id == "Qwen/Qwen3-235B-A22B-Thinking-2507":
- provider = "cerebras"
- elif model_id == "Qwen/Qwen3-Coder-480B-A35B-Instruct":
- provider = "cerebras"
- return InferenceClient(
- provider=provider,
- api_key=HF_TOKEN,
- bill_to="huggingface"
- )
-
-# Type definitions
-History = List[Tuple[str, str]]
-Messages = List[Dict[str, str]]
-
-# Tavily Search Client
-TAVILY_API_KEY = os.getenv('TAVILY_API_KEY')
-tavily_client = None
-if TAVILY_API_KEY:
- try:
- tavily_client = TavilyClient(api_key=TAVILY_API_KEY)
- except Exception as e:
- print(f"Failed to initialize Tavily client: {e}")
- tavily_client = None
-
-def history_to_messages(history: History, system: str) -> Messages:
- messages = [{'role': 'system', 'content': system}]
- for h in history:
- # Handle multimodal content in history
- user_content = h[0]
- if isinstance(user_content, list):
- # Extract text from multimodal content
- text_content = ""
- for item in user_content:
- if isinstance(item, dict) and item.get("type") == "text":
- text_content += item.get("text", "")
- user_content = text_content if text_content else str(user_content)
-
- messages.append({'role': 'user', 'content': user_content})
- messages.append({'role': 'assistant', 'content': h[1]})
- return messages
-
-def messages_to_history(messages: Messages) -> Tuple[str, History]:
- assert messages[0]['role'] == 'system'
- history = []
- for q, r in zip(messages[1::2], messages[2::2]):
- # Extract text content from multimodal messages for history
- user_content = q['content']
- if isinstance(user_content, list):
- text_content = ""
- for item in user_content:
- if isinstance(item, dict) and item.get("type") == "text":
- text_content += item.get("text", "")
- user_content = text_content if text_content else str(user_content)
-
- history.append([user_content, r['content']])
- return history
-
-def history_to_chatbot_messages(history: History) -> List[Dict[str, str]]:
- """Convert history tuples to chatbot message format"""
- messages = []
- for user_msg, assistant_msg in history:
- # Handle multimodal content
- if isinstance(user_msg, list):
- text_content = ""
- for item in user_msg:
- if isinstance(item, dict) and item.get("type") == "text":
- text_content += item.get("text", "")
- user_msg = text_content if text_content else str(user_msg)
-
- messages.append({"role": "user", "content": user_msg})
- messages.append({"role": "assistant", "content": assistant_msg})
- return messages
-
-def remove_code_block(text):
- # Try to match code blocks with language markers
- patterns = [
- r'```(?:html|HTML)\n([\s\S]+?)\n```', # Match ```html or ```HTML
- r'```\n([\s\S]+?)\n```', # Match code blocks without language markers
- r'```([\s\S]+?)```' # Match code blocks without line breaks
- ]
- for pattern in patterns:
- match = re.search(pattern, text, re.DOTALL)
- if match:
- extracted = match.group(1).strip()
- # Remove a leading language marker line (e.g., 'python') if present
- if extracted.split('\n', 1)[0].strip().lower() in ['python', 'html', 'css', 'javascript', 'json', 'c', 'cpp', 'markdown', 'latex', 'jinja2', 'typescript', 'yaml', 'dockerfile', 'shell', 'r', 'sql', 'sql-mssql', 'sql-mysql', 'sql-mariadb', 'sql-sqlite', 'sql-cassandra', 'sql-plSQL', 'sql-hive', 'sql-pgsql', 'sql-gql', 'sql-gpsql', 'sql-sparksql', 'sql-esper']:
- return extracted.split('\n', 1)[1] if '\n' in extracted else ''
- # If HTML markup starts later in the block (e.g., Poe injected preface), trim to first HTML root
- html_root_idx = None
- for tag in [' 0:
- return extracted[html_root_idx:].strip()
- return extracted
- # If no code block is found, check if the entire text is HTML
- stripped = text.strip()
- if stripped.startswith('') or stripped.startswith(' 0:
- return stripped[idx:].strip()
- return stripped
- # Special handling for python: remove python marker
- if text.strip().startswith('```python'):
- return text.strip()[9:-3].strip()
- # Remove a leading language marker line if present (fallback)
- lines = text.strip().split('\n', 1)
- if lines[0].strip().lower() in ['python', 'html', 'css', 'javascript', 'json', 'c', 'cpp', 'markdown', 'latex', 'jinja2', 'typescript', 'yaml', 'dockerfile', 'shell', 'r', 'sql', 'sql-mssql', 'sql-mysql', 'sql-mariadb', 'sql-sqlite', 'sql-cassandra', 'sql-plSQL', 'sql-hive', 'sql-pgsql', 'sql-gql', 'sql-gpsql', 'sql-sparksql', 'sql-esper']:
- return lines[1] if len(lines) > 1 else ''
- return text.strip()
-
-## React CDN compatibility fixer removed per user preference
-
-def strip_placeholder_thinking(text: str) -> str:
- """Remove placeholder 'Thinking...' status lines from streamed text."""
- if not text:
- return text
- # Matches lines like: "Thinking..." or "Thinking... (12s elapsed)"
- return re.sub(r"(?mi)^[\t ]*Thinking\.\.\.(?:\s*\(\d+s elapsed\))?[\t ]*$\n?", "", text)
-
-def is_placeholder_thinking_only(text: str) -> bool:
- """Return True if text contains only 'Thinking...' placeholder lines (with optional elapsed)."""
- if not text:
- return False
- stripped = text.strip()
- if not stripped:
- return False
- return re.fullmatch(r"(?s)(?:\s*Thinking\.\.\.(?:\s*\(\d+s elapsed\))?\s*)+", stripped) is not None
-
-def extract_last_thinking_line(text: str) -> str:
- """Extract the last 'Thinking...' line to display as status."""
- matches = list(re.finditer(r"Thinking\.\.\.(?:\s*\(\d+s elapsed\))?", text))
- return matches[-1].group(0) if matches else "Thinking..."
-
-def parse_transformers_js_output(text):
- """Parse transformers.js output and extract the three files (index.html, index.js, style.css)"""
- files = {
- 'index.html': '',
- 'index.js': '',
- 'style.css': ''
- }
-
- # Multiple patterns to match the three code blocks with different variations
- html_patterns = [
- r'```html\s*\n([\s\S]+?)\n```',
- r'```htm\s*\n([\s\S]+?)\n```',
- r'```\s*(?:index\.html|html)\s*\n([\s\S]+?)\n```'
- ]
-
- js_patterns = [
- r'```javascript\s*\n([\s\S]+?)\n```',
- r'```js\s*\n([\s\S]+?)\n```',
- r'```\s*(?:index\.js|javascript)\s*\n([\s\S]+?)\n```'
- ]
-
- css_patterns = [
- r'```css\s*\n([\s\S]+?)\n```',
- r'```\s*(?:style\.css|css)\s*\n([\s\S]+?)\n```'
- ]
-
- # Extract HTML content
- for pattern in html_patterns:
- html_match = re.search(pattern, text, re.IGNORECASE)
- if html_match:
- files['index.html'] = html_match.group(1).strip()
- break
-
- # Extract JavaScript content
- for pattern in js_patterns:
- js_match = re.search(pattern, text, re.IGNORECASE)
- if js_match:
- files['index.js'] = js_match.group(1).strip()
- break
-
- # Extract CSS content
- for pattern in css_patterns:
- css_match = re.search(pattern, text, re.IGNORECASE)
- if css_match:
- files['style.css'] = css_match.group(1).strip()
- break
-
- # Fallback: support === index.html === format if any file is missing
- if not (files['index.html'] and files['index.js'] and files['style.css']):
- # Use regex to extract sections
- html_fallback = re.search(r'===\s*index\.html\s*===\s*\n([\s\S]+?)(?=\n===|$)', text, re.IGNORECASE)
- js_fallback = re.search(r'===\s*index\.js\s*===\s*\n([\s\S]+?)(?=\n===|$)', text, re.IGNORECASE)
- css_fallback = re.search(r'===\s*style\.css\s*===\s*\n([\s\S]+?)(?=\n===|$)', text, re.IGNORECASE)
-
- if html_fallback:
- files['index.html'] = html_fallback.group(1).strip()
- if js_fallback:
- files['index.js'] = js_fallback.group(1).strip()
- if css_fallback:
- files['style.css'] = css_fallback.group(1).strip()
-
- # Additional fallback: extract from numbered sections or file headers
- if not (files['index.html'] and files['index.js'] and files['style.css']):
- # Try patterns like "1. index.html:" or "**index.html**"
- patterns = [
- (r'(?:^\d+\.\s*|^##\s*|^\*\*\s*)index\.html(?:\s*:|\*\*:?)\s*\n([\s\S]+?)(?=\n(?:\d+\.|##|\*\*|===)|$)', 'index.html'),
- (r'(?:^\d+\.\s*|^##\s*|^\*\*\s*)index\.js(?:\s*:|\*\*:?)\s*\n([\s\S]+?)(?=\n(?:\d+\.|##|\*\*|===)|$)', 'index.js'),
- (r'(?:^\d+\.\s*|^##\s*|^\*\*\s*)style\.css(?:\s*:|\*\*:?)\s*\n([\s\S]+?)(?=\n(?:\d+\.|##|\*\*|===)|$)', 'style.css')
- ]
-
- for pattern, file_key in patterns:
- if not files[file_key]:
- match = re.search(pattern, text, re.IGNORECASE | re.MULTILINE)
- if match:
- # Clean up the content by removing any code block markers
- content = match.group(1).strip()
- content = re.sub(r'^```\w*\s*\n', '', content)
- content = re.sub(r'\n```\s*$', '', content)
- files[file_key] = content.strip()
-
- return files
-
-def format_transformers_js_output(files):
- """Format the three files into a single display string"""
- output = []
- output.append("=== index.html ===")
- output.append(files['index.html'])
- output.append("\n=== index.js ===")
- output.append(files['index.js'])
- output.append("\n=== style.css ===")
- output.append(files['style.css'])
- return '\n'.join(output)
-
-def build_transformers_inline_html(files: dict) -> str:
- """Merge transformers.js three-file output into a single self-contained HTML document.
-
- - Inlines style.css into a " if css else ""
- if style_tag:
- if '' in doc.lower():
- # Preserve original casing by finding closing head case-insensitively
- match = _re.search(r"", doc, flags=_re.IGNORECASE)
- if match:
- idx = match.start()
- doc = doc[:idx] + style_tag + doc[idx:]
- else:
- # No head; insert at top of body
- match = _re.search(r"]*>", doc, flags=_re.IGNORECASE)
- if match:
- idx = match.end()
- doc = doc[:idx] + "\n" + style_tag + doc[idx:]
- else:
- # Append at beginning
- doc = style_tag + doc
-
- # Inline JS: insert before
- script_tag = f"" if js else ""
- # Cleanup script to clear Cache Storage and IndexedDB on unload to free model weights
- cleanup_tag = (
- ""
- )
- if script_tag:
- match = _re.search(r"", doc, flags=_re.IGNORECASE)
- if match:
- idx = match.start()
- doc = doc[:idx] + script_tag + cleanup_tag + doc[idx:]
- else:
- # Append at end
- doc = doc + script_tag + cleanup_tag
-
- return doc
-
-def send_transformers_to_sandbox(files: dict) -> str:
- """Build a self-contained HTML document from transformers.js files and return an iframe preview."""
- merged_html = build_transformers_inline_html(files)
- return send_to_sandbox(merged_html)
-
-def parse_svelte_output(text):
- """Parse Svelte output to extract individual files"""
- files = {
- 'src/App.svelte': '',
- 'src/app.css': ''
- }
-
- import re
-
- # First try to extract using code block patterns
- svelte_pattern = r'```svelte\s*\n([\s\S]+?)\n```'
- css_pattern = r'```css\s*\n([\s\S]+?)\n```'
-
- # Extract svelte block for App.svelte
- svelte_match = re.search(svelte_pattern, text, re.IGNORECASE)
- css_match = re.search(css_pattern, text, re.IGNORECASE)
-
- if svelte_match:
- files['src/App.svelte'] = svelte_match.group(1).strip()
- if css_match:
- files['src/app.css'] = css_match.group(1).strip()
-
- # Fallback: support === filename === format if any file is missing
- if not (files['src/App.svelte'] and files['src/app.css']):
- # Use regex to extract sections
- app_svelte_fallback = re.search(r'===\s*src/App\.svelte\s*===\n([\s\S]+?)(?=\n===|$)', text, re.IGNORECASE)
- app_css_fallback = re.search(r'===\s*src/app\.css\s*===\n([\s\S]+?)(?=\n===|$)', text, re.IGNORECASE)
-
- if app_svelte_fallback:
- files['src/App.svelte'] = app_svelte_fallback.group(1).strip()
- if app_css_fallback:
- files['src/app.css'] = app_css_fallback.group(1).strip()
-
- return files
-
-def format_svelte_output(files):
- """Format Svelte files into a single display string"""
- output = []
- output.append("=== src/App.svelte ===")
- output.append(files['src/App.svelte'])
- output.append("\n=== src/app.css ===")
- output.append(files['src/app.css'])
- return '\n'.join(output)
-
-def history_render(history: History):
- return gr.update(visible=True), history
-
-def clear_history():
- return [], [], None, "" # Empty lists for both tuple format and chatbot messages, None for file, empty string for website URL
-
-def update_image_input_visibility(model):
- """Update image input visibility based on selected model"""
- is_ernie_vl = model.get("id") == "baidu/ERNIE-4.5-VL-424B-A47B-Base-PT"
- is_glm_vl = model.get("id") == "THUDM/GLM-4.1V-9B-Thinking"
- is_glm_45v = model.get("id") == "zai-org/GLM-4.5V"
- return gr.update(visible=is_ernie_vl or is_glm_vl or is_glm_45v)
-
-def process_image_for_model(image):
- """Convert image to base64 for model input"""
- if image is None:
- return None
-
- # Convert numpy array to PIL Image if needed
- import io
- import base64
- import numpy as np
- from PIL import Image
-
- # Handle numpy array from Gradio
- if isinstance(image, np.ndarray):
- image = Image.fromarray(image)
-
- buffer = io.BytesIO()
- image.save(buffer, format='PNG')
- img_str = base64.b64encode(buffer.getvalue()).decode()
- return f"data:image/png;base64,{img_str}"
-
-def generate_image_with_qwen(prompt: str, image_index: int = 0) -> str:
- """Generate image using Qwen image model via Hugging Face InferenceClient with optimized data URL"""
- try:
- # Check if HF_TOKEN is available
- if not os.getenv('HF_TOKEN'):
- return "Error: HF_TOKEN environment variable is not set. Please set it to your Hugging Face API token."
-
- # Create InferenceClient for Qwen image generation
- client = InferenceClient(
- provider="auto",
- api_key=os.getenv('HF_TOKEN'),
- bill_to="huggingface",
- )
-
- # Generate image using Qwen/Qwen-Image model
- image = client.text_to_image(
- prompt,
- model="Qwen/Qwen-Image",
- )
-
- # Resize image to reduce size while maintaining quality
- max_size = 512
- if image.width > max_size or image.height > max_size:
- image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
-
- # Convert PIL Image to optimized base64 for HTML embedding
- import io
- import base64
-
- buffer = io.BytesIO()
- # Save as JPEG with compression for smaller file size
- image.convert('RGB').save(buffer, format='JPEG', quality=85, optimize=True)
- img_str = base64.b64encode(buffer.getvalue()).decode()
-
- # Return HTML img tag with optimized data URL
- return f''
-
- except Exception as e:
- print(f"Image generation error: {str(e)}")
- return f"Error generating image: {str(e)}"
-
-def generate_image_to_image(input_image_data, prompt: str) -> str:
- """Generate an image using image-to-image with FLUX.1-Kontext-dev via Hugging Face InferenceClient.
-
- Returns an HTML tag with optimized base64 JPEG data, similar to text-to-image output.
- """
- try:
- # Check token
- if not os.getenv('HF_TOKEN'):
- return "Error: HF_TOKEN environment variable is not set. Please set it to your Hugging Face API token."
-
- # Prepare client
- client = InferenceClient(
- provider="auto",
- api_key=os.getenv('HF_TOKEN'),
- bill_to="huggingface",
- )
-
- # Normalize input image to bytes
- import io
- from PIL import Image
- try:
- import numpy as np
- except Exception:
- np = None
-
- if hasattr(input_image_data, 'read'):
- # File-like object
- raw = input_image_data.read()
- pil_image = Image.open(io.BytesIO(raw))
- elif hasattr(input_image_data, 'mode') and hasattr(input_image_data, 'size'):
- # PIL Image
- pil_image = input_image_data
- elif np is not None and isinstance(input_image_data, np.ndarray):
- pil_image = Image.fromarray(input_image_data)
- elif isinstance(input_image_data, (bytes, bytearray)):
- pil_image = Image.open(io.BytesIO(input_image_data))
- else:
- # Fallback: try to convert via bytes
- pil_image = Image.open(io.BytesIO(bytes(input_image_data)))
-
- # Ensure RGB
- if pil_image.mode != 'RGB':
- pil_image = pil_image.convert('RGB')
-
- buf = io.BytesIO()
- pil_image.save(buf, format='PNG')
- input_bytes = buf.getvalue()
-
- # Call image-to-image
- image = client.image_to_image(
- input_bytes,
- prompt=prompt,
- model="black-forest-labs/FLUX.1-Kontext-dev",
- )
-
- # Resize/optimize
- max_size = 512
- if image.width > max_size or image.height > max_size:
- image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
-
- out_buf = io.BytesIO()
- image.convert('RGB').save(out_buf, format='JPEG', quality=85, optimize=True)
-
- import base64
- img_str = base64.b64encode(out_buf.getvalue()).decode()
- return f""
- except Exception as e:
- print(f"Image-to-image generation error: {str(e)}")
- return f"Error generating image (image-to-image): {str(e)}"
-
-def extract_image_prompts_from_text(text: str, num_images_needed: int = 1) -> list:
- """Extract image generation prompts from the full text based on number of images needed"""
- # Use the entire text as the base prompt for image generation
- # Clean up the text and create variations for the required number of images
-
- # Clean the text
- cleaned_text = text.strip()
- if not cleaned_text:
- return []
-
- # Create variations of the prompt for the required number of images
- prompts = []
-
- # Generate exactly the number of images needed
- for i in range(num_images_needed):
- if i == 0:
- # First image: Use the full prompt as-is
- prompts.append(cleaned_text)
- elif i == 1:
- # Second image: Add "visual representation" to make it more image-focused
- prompts.append(f"Visual representation of {cleaned_text}")
- elif i == 2:
- # Third image: Add "illustration" to create a different style
- prompts.append(f"Illustration of {cleaned_text}")
- else:
- # For additional images, use different variations
- variations = [
- f"Digital art of {cleaned_text}",
- f"Modern design of {cleaned_text}",
- f"Professional illustration of {cleaned_text}",
- f"Clean design of {cleaned_text}",
- f"Beautiful visualization of {cleaned_text}",
- f"Stylish representation of {cleaned_text}",
- f"Contemporary design of {cleaned_text}",
- f"Elegant illustration of {cleaned_text}"
- ]
- variation_index = (i - 3) % len(variations)
- prompts.append(variations[variation_index])
-
- return prompts
-
-def create_image_replacement_blocks(html_content: str, user_prompt: str) -> str:
- """Create search/replace blocks to replace placeholder images with generated Qwen images"""
- if not user_prompt:
- return ""
-
- # Find existing image placeholders in the HTML first
- import re
-
- # Common patterns for placeholder images
- placeholder_patterns = [
- r']*src=["\'](?:placeholder|dummy|sample|example)[^"\']*["\'][^>]*>',
- r']*src=["\']https?://via\.placeholder\.com[^"\']*["\'][^>]*>',
- r']*src=["\']https?://picsum\.photos[^"\']*["\'][^>]*>',
- r']*src=["\']https?://dummyimage\.com[^"\']*["\'][^>]*>',
- r']*alt=["\'][^"\']*placeholder[^"\']*["\'][^>]*>',
- r']*class=["\'][^"\']*placeholder[^"\']*["\'][^>]*>',
- r']*id=["\'][^"\']*placeholder[^"\']*["\'][^>]*>',
- r']*src=["\']data:image[^"\']*["\'][^>]*>', # Base64 images
- r']*src=["\']#["\'][^>]*>', # Empty src
- r']*src=["\']about:blank["\'][^>]*>', # About blank
- ]
-
- # Find all placeholder images
- placeholder_images = []
- for pattern in placeholder_patterns:
- matches = re.findall(pattern, html_content, re.IGNORECASE)
- placeholder_images.extend(matches)
-
- # If no placeholder images found, look for any img tags
- if not placeholder_images:
- img_pattern = r']*>'
- placeholder_images = re.findall(img_pattern, html_content)
-
- # Also look for div elements that might be image placeholders
- div_placeholder_patterns = [
- r'