Spaces:
Sleeping
Sleeping
# import gradio as gr | |
# from huggingface_hub import InferenceClient | |
# import os | |
# client = InferenceClient( | |
# model="mistralai/Mistral-Small-24B-Instruct-2501", | |
# token=os.getenv('HF_TOKEN') | |
# ) | |
# def chat_fn(message, system_message, history_str, max_tokens, temperature, top_p): | |
# # Convert history string (optional) to message list | |
# messages = [{"role": "system", "content": system_message}] | |
# if history_str: | |
# # Format: user1||assistant1\nuser2||assistant2 | |
# for pair in history_str.split("\n"): | |
# if "||" in pair: | |
# user_msg, assistant_msg = pair.split("||", 1) | |
# messages.append({"role": "user", "content": user_msg}) | |
# messages.append({"role": "assistant", "content": assistant_msg}) | |
# messages.append({"role": "user", "content": message}) | |
# # Get response from HF | |
# response = "" | |
# for chunk in client.chat_completion( | |
# messages=messages, | |
# stream=True, | |
# max_tokens=max_tokens, | |
# temperature=temperature, | |
# top_p=top_p, | |
# ): | |
# response += chunk.choices[0].delta.content or "" | |
# return response | |
# demo = gr.Interface( | |
# fn=chat_fn, | |
# inputs=[ | |
# gr.Textbox(lines=2, label="User Message"), | |
# gr.Textbox(value="You are a friendly Chatbot.", label="System Prompt"), | |
# gr.Textbox(lines=4, placeholder="user||bot\nuser2||bot2", label="Conversation History (optional)"), | |
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max Tokens"), | |
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
# gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"), | |
# ], | |
# outputs="text", | |
# allow_flagging="never", | |
# title="LLM Budaya", | |
# description="Chatbot menggunakan model HuggingFace Zephyr-7B" | |
# ) | |
# if __name__ == "__main__": | |
# demo.launch() | |
import gradio as gr | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
# Load model & tokenizer | |
model_id = "mistralai/Mistral-Small-24B-Instruct-2501" | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
# Load model di CPU | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
torch_dtype=torch.float32, | |
device_map={"": "cpu"} | |
) | |
# Inference function | |
def chat_fn(message, system_prompt, max_tokens, temperature, top_p): | |
prompt = f"<s>[INST] {system_prompt.strip()}\n{message.strip()} [/INST]" | |
inputs = tokenizer(prompt, return_tensors="pt").to("cpu") | |
with torch.no_grad(): | |
output = model.generate( | |
**inputs, | |
max_new_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
do_sample=True, | |
pad_token_id=tokenizer.eos_token_id | |
) | |
decoded = tokenizer.decode(output[0], skip_special_tokens=True) | |
return decoded.split("[/INST]")[-1].strip() | |
# Gradio UI | |
demo = gr.Interface( | |
fn=chat_fn, | |
inputs=[ | |
gr.Textbox(lines=2, label="User Message"), | |
gr.Textbox(value="You are a helpful and concise assistant.", label="System Prompt"), | |
gr.Slider(minimum=1, maximum=1024, value=256, step=1, label="Max Tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"), | |
], | |
outputs="text", | |
title="Mistral-Small-24B CPU Chat", | |
description="Chatbot menggunakan model Mistral-Small-24B-Instruct-2501 dijalankan lokal via CPU. Ini akan berjalan lambat.", | |
flagging_mode="never", | |
) | |
if __name__ == "__main__": | |
demo.launch() | |