import gradio as gr from huggingface_hub import InferenceClient import os client = InferenceClient( model="mistralai/Mistral-7B-Instruct-v0.3", token=os.getenv('HF_TOKEN') ) def chat_fn(message, system_message, history_str, max_tokens, temperature, top_p): # Convert history string (optional) to message list messages = [{"role": "system", "content": system_message}] if history_str: # Format: user1||assistant1\nuser2||assistant2 for pair in history_str.split("\n"): if "||" in pair: user_msg, assistant_msg = pair.split("||", 1) messages.append({"role": "user", "content": user_msg}) messages.append({"role": "assistant", "content": assistant_msg}) messages.append({"role": "user", "content": message}) # Get response from HF response = "" for chunk in client.chat_completion( messages=messages, stream=True, max_tokens=max_tokens, temperature=temperature, top_p=top_p, ): response += chunk.choices[0].delta.content or "" return response demo = gr.Interface( fn=chat_fn, inputs=[ gr.Textbox(lines=2, label="User Message"), gr.Textbox(value="You are a friendly Chatbot.", label="System Prompt"), gr.Textbox(lines=4, placeholder="user||bot\nuser2||bot2", label="Conversation History (optional)"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max Tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"), ], outputs="text", allow_flagging="never", title="LLM Budaya", description="Chatbot menggunakan model HuggingFace Zephyr-7B" ) if __name__ == "__main__": demo.launch()