import gradio as gr from transformers import pipeline # Load model (You can replace this with any model like GPT-2 or your custom one) generator = pipeline("text-generation", model="gpt2") def generate_description(title, tags): prompt = f"Write a clear, professional, and SEO-optimized product description for an e-commerce listing. The product title is: '{title}'. The relevant tags or features include: {tags}. Mention key benefits, usage, and appeal to buyers." result = generator(prompt, max_length=100, num_return_sequences=1) return result[0]['generated_text'] # Gradio UI interface = gr.Interface( fn=generate_description, inputs=[ gr.Textbox(label="Product Title"), gr.Textbox(label="Tags (comma-separated)") ], outputs=gr.Textbox(label="Generated Description"), title="E-Commerce Product Description Generator", description="Enter product title and tags to generate an SEO-optimized product description." ) interface.launch()