Mojo
commited on
Commit
·
229755d
1
Parent(s):
b267f13
add utilities file
Browse files- S13.ipynb +0 -0
- utilities/callbacks.py +64 -0
- utilities/dataset.py +61 -0
- utilities/resnet.py +162 -0
- utilities/transforms.py +20 -0
- utilities/visualise.py +412 -0
S13.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
utilities/callbacks.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytorch_lightning as pl
|
2 |
+
from pytorch_lightning.callbacks import Callback
|
3 |
+
|
4 |
+
from .visualize import plot_model_training_curves
|
5 |
+
|
6 |
+
|
7 |
+
class TrainingEndCallback(Callback):
|
8 |
+
def on_train_end(self, trainer, pl_module):
|
9 |
+
# Perform actions at the end of the entire training process
|
10 |
+
print("Training, validation, and testing completed!")
|
11 |
+
|
12 |
+
logged_metrics = pl_module.log_store
|
13 |
+
|
14 |
+
plot_model_training_curves(
|
15 |
+
train_accs=logged_metrics["train_acc_epoch"],
|
16 |
+
test_accs=logged_metrics["val_acc_epoch"],
|
17 |
+
train_losses=logged_metrics["train_loss_epoch"],
|
18 |
+
test_losses=logged_metrics["val_loss_epoch"],
|
19 |
+
)
|
20 |
+
|
21 |
+
|
22 |
+
class PrintLearningMetricsCallback(Callback):
|
23 |
+
def on_train_epoch_end(
|
24 |
+
self, trainer: pl.Trainer, pl_module: pl.LightningModule
|
25 |
+
) -> None:
|
26 |
+
super().on_train_epoch_end(trainer, pl_module)
|
27 |
+
print(
|
28 |
+
f"\nEpoch: {trainer.current_epoch}, Train Loss: {trainer.logged_metrics['train_loss_epoch']}, Train Accuracy: {trainer.logged_metrics['train_acc_epoch']}"
|
29 |
+
)
|
30 |
+
pl_module.log_store.get("train_loss_epoch").append(
|
31 |
+
trainer.logged_metrics["train_loss_epoch"].cpu().detach().item()
|
32 |
+
)
|
33 |
+
pl_module.log_store.get("train_acc_epoch").append(
|
34 |
+
trainer.logged_metrics["train_acc_epoch"].cpu().detach().item()
|
35 |
+
)
|
36 |
+
|
37 |
+
def on_validation_epoch_end(
|
38 |
+
self, trainer: pl.Trainer, pl_module: pl.LightningModule
|
39 |
+
) -> None:
|
40 |
+
super().on_validation_epoch_end(trainer, pl_module)
|
41 |
+
print(
|
42 |
+
f"\nEpoch: {trainer.current_epoch}, Val Loss: {trainer.logged_metrics['val_loss_epoch']}, Val Accuracy: {trainer.logged_metrics['val_acc_epoch']}"
|
43 |
+
)
|
44 |
+
pl_module.log_store.get("val_loss_epoch").append(
|
45 |
+
trainer.logged_metrics["val_loss_epoch"].cpu().detach().item()
|
46 |
+
)
|
47 |
+
pl_module.log_store.get("val_acc_epoch").append(
|
48 |
+
trainer.logged_metrics["val_acc_epoch"].cpu().detach().item()
|
49 |
+
)
|
50 |
+
|
51 |
+
|
52 |
+
def on_test_epoch_end(
|
53 |
+
self, trainer: pl.Trainer, pl_module: pl.LightningModule
|
54 |
+
) -> None:
|
55 |
+
super().on_test_epoch_end(trainer, pl_module)
|
56 |
+
print(
|
57 |
+
f"\nEpoch: {trainer.current_epoch}, Test Loss: {trainer.logged_metrics['test_loss_epoch']}, Test Accuracy: {trainer.logged_metrics['test_acc_epoch']}"
|
58 |
+
)
|
59 |
+
pl_module.log_store.get("test_loss_epoch").append(
|
60 |
+
trainer.logged_metrics["test_loss_epoch"].cpu().detach().item()
|
61 |
+
)
|
62 |
+
pl_module.log_store.get("test_acc_epoch").append(
|
63 |
+
trainer.logged_metrics["test_acc_epoch"].cpu().detach().item()
|
64 |
+
)
|
utilities/dataset.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytorch_lightning as pl
|
2 |
+
from torch.utils.data import DataLoader
|
3 |
+
from torchvision.datasets import CIFAR10
|
4 |
+
from torchvision import transforms
|
5 |
+
import torch
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
|
9 |
+
class CIFAR10(torch.utils.data.Dataset):
|
10 |
+
def __init__(self, dataset, transform=None) -> None:
|
11 |
+
# Initialize dataset and transform
|
12 |
+
self.dataset = dataset
|
13 |
+
self.transform = transform
|
14 |
+
|
15 |
+
def __len__(self) -> int:
|
16 |
+
# Return the length of the dataset
|
17 |
+
return len(self.dataset)
|
18 |
+
|
19 |
+
def __getitem__(self, index):
|
20 |
+
# Get image and label
|
21 |
+
image, label = self.dataset[index]
|
22 |
+
|
23 |
+
# Convert PIL image to numpy array
|
24 |
+
image = np.array(image)
|
25 |
+
|
26 |
+
# Apply transformations
|
27 |
+
if self.transform:
|
28 |
+
image = self.transform(image=image)["image"]
|
29 |
+
|
30 |
+
return (image, label)
|
31 |
+
|
32 |
+
class CIFAR10DataModule(pl.LightningDataModule):
|
33 |
+
def __init__(self, train_set_transforms,test_set_transforms, data_dir: str = "./data",batch_size: int = 64, num_workers: int = 4):
|
34 |
+
super().__init__()
|
35 |
+
self.data_dir = data_dir
|
36 |
+
self.batch_size = batch_size
|
37 |
+
self.num_workers = num_workers
|
38 |
+
self.train_set_transforms =train_set_transforms
|
39 |
+
self.test_set_transforms = test_set_transforms
|
40 |
+
|
41 |
+
def prepare_data(self):
|
42 |
+
# Download the CIFAR10 dataset
|
43 |
+
CIFAR10(self.data_dir, train=True, download=True)
|
44 |
+
CIFAR10(self.data_dir, train=False, download=True)
|
45 |
+
|
46 |
+
def setup(self, stage: str = None):
|
47 |
+
# Load the dataset
|
48 |
+
if stage == "fit" or stage is None:
|
49 |
+
self.cifar10_train = CIFAR10(self.data_dir, train=True, transform=self.train_set_transforms)
|
50 |
+
self.cifar10_val = CIFAR10(self.data_dir, train=False, transform=self.train_set_transforms)
|
51 |
+
if stage == "test" or stage is None:
|
52 |
+
self.cifar10_test = CIFAR10(self.data_dir, train=False, transform=self.test_set_transforms)
|
53 |
+
|
54 |
+
def train_dataloader(self):
|
55 |
+
return DataLoader(self.cifar10_train, batch_size=self.batch_size, num_workers=self.num_workers, shuffle=True)
|
56 |
+
|
57 |
+
def val_dataloader(self):
|
58 |
+
return DataLoader(self.cifar10_val, batch_size=self.batch_size, num_workers=self.num_workers)
|
59 |
+
|
60 |
+
def test_dataloader(self):
|
61 |
+
return DataLoader(self.cifar10_test, batch_size=self.batch_size, num_workers=self.num_workers)
|
utilities/resnet.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
ResNet in PyTorch.
|
3 |
+
For Pre-activation ResNet, see 'preact_resnet.py'.
|
4 |
+
|
5 |
+
Reference:
|
6 |
+
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
|
7 |
+
Deep Residual Learning for Image Recognition. arXiv:1512.03385
|
8 |
+
"""
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.nn.functional as F
|
12 |
+
import pytorch_lightning as pl
|
13 |
+
from torchmetrics.functional import accuracy
|
14 |
+
from torchvision import transforms
|
15 |
+
from torch.utils.data import DataLoader
|
16 |
+
from torchvision.datasets import CIFAR10
|
17 |
+
import albumentations as A
|
18 |
+
from albumentations.pytorch import ToTensorV2
|
19 |
+
|
20 |
+
|
21 |
+
class BasicBlock(nn.Module):
|
22 |
+
expansion = 1
|
23 |
+
|
24 |
+
def __init__(self, in_planes, planes, stride=1):
|
25 |
+
super(BasicBlock, self).__init__()
|
26 |
+
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
|
27 |
+
self.bn1 = nn.BatchNorm2d(planes)
|
28 |
+
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
|
29 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
30 |
+
|
31 |
+
self.shortcut = nn.Sequential()
|
32 |
+
if stride != 1 or in_planes != self.expansion*planes:
|
33 |
+
self.shortcut = nn.Sequential(
|
34 |
+
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
|
35 |
+
nn.BatchNorm2d(self.expansion*planes)
|
36 |
+
)
|
37 |
+
|
38 |
+
def forward(self, x):
|
39 |
+
out = F.relu(self.bn1(self.conv1(x)))
|
40 |
+
out = self.bn2(self.conv2(out))
|
41 |
+
out += self.shortcut(x)
|
42 |
+
out = F.relu(out)
|
43 |
+
return out
|
44 |
+
|
45 |
+
|
46 |
+
class LitResNet(pl.LightningModule):
|
47 |
+
def __init__(self, block, num_blocks, num_classes=10,batch_size=128):
|
48 |
+
super(LitResNet, self).__init__()
|
49 |
+
self.batch_size = batch_size
|
50 |
+
self.in_planes = 64
|
51 |
+
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
|
52 |
+
self.bn1 = nn.BatchNorm2d(64)
|
53 |
+
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
|
54 |
+
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
|
55 |
+
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
|
56 |
+
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
|
57 |
+
self.linear = nn.Linear(512*block.expansion, num_classes)
|
58 |
+
|
59 |
+
def _make_layer(self, block, planes, num_blocks, stride):
|
60 |
+
strides = [stride] + [1]*(num_blocks-1)
|
61 |
+
layers = []
|
62 |
+
for stride in strides:
|
63 |
+
layers.append(block(self.in_planes, planes, stride))
|
64 |
+
self.in_planes = planes * block.expansion
|
65 |
+
return nn.Sequential(*layers)
|
66 |
+
|
67 |
+
|
68 |
+
def forward(self, x):
|
69 |
+
out = F.relu(self.bn1(self.conv1(x)))
|
70 |
+
out = self.layer1(out)
|
71 |
+
out = self.layer2(out)
|
72 |
+
out = self.layer3(out)
|
73 |
+
out = self.layer4(out)
|
74 |
+
out = F.avg_pool2d(out, 4)
|
75 |
+
out = out.view(out.size(0), -1)
|
76 |
+
out = self.linear(out)
|
77 |
+
return out
|
78 |
+
|
79 |
+
|
80 |
+
|
81 |
+
def training_step(self, batch, batch_idx):
|
82 |
+
x, y = batch
|
83 |
+
y_hat = self(x)
|
84 |
+
# Calculate loss
|
85 |
+
loss = F.cross_entropy(y_hat, y)
|
86 |
+
#Calculate accuracy
|
87 |
+
acc = accuracy(y_hat, y)
|
88 |
+
self.log_dict(
|
89 |
+
{"train_loss": loss, "train_acc": acc},
|
90 |
+
on_step=True,
|
91 |
+
on_epoch=True,
|
92 |
+
prog_bar=True,
|
93 |
+
logger=True,
|
94 |
+
)
|
95 |
+
return loss
|
96 |
+
|
97 |
+
def validation_step(self, batch, batch_idx):
|
98 |
+
x, y = batch
|
99 |
+
y_hat = self(x)
|
100 |
+
loss = F.cross_entropy(y_hat, y)
|
101 |
+
acc = accuracy(y_hat, y)
|
102 |
+
self.log_dict(
|
103 |
+
{"val_loss": loss, "val_acc": acc},
|
104 |
+
on_step=True,
|
105 |
+
on_epoch=True,
|
106 |
+
prog_bar=True,
|
107 |
+
logger=True,
|
108 |
+
)
|
109 |
+
return loss
|
110 |
+
|
111 |
+
def test_step(self, batch, batch_idx):
|
112 |
+
x, y = batch
|
113 |
+
y_hat = self(x)
|
114 |
+
|
115 |
+
argmax_pred = y_hat.argmax(dim=1).cpu()
|
116 |
+
loss = F.cross_entropy(y_hat, y)
|
117 |
+
acc = accuracy(y_hat, y)
|
118 |
+
self.log_dict(
|
119 |
+
{"test_loss": loss, "test_acc": acc},
|
120 |
+
on_step=True,
|
121 |
+
on_epoch=True,
|
122 |
+
prog_bar=True,
|
123 |
+
logger=True,
|
124 |
+
)
|
125 |
+
|
126 |
+
# Update the confusion matrix
|
127 |
+
self.confusion_matrix.update(y_hat, y)
|
128 |
+
|
129 |
+
# Store the predictions, labels and incorrect predictions
|
130 |
+
x, y, y_hat, argmax_pred = (
|
131 |
+
x.cpu(),
|
132 |
+
y.cpu(),
|
133 |
+
y_hat.cpu(),
|
134 |
+
argmax_pred.cpu(),
|
135 |
+
)
|
136 |
+
self.pred_store["test_preds"] = torch.cat(
|
137 |
+
(self.pred_store["test_preds"], argmax_pred), dim=0
|
138 |
+
)
|
139 |
+
self.pred_store["test_labels"] = torch.cat(
|
140 |
+
(self.pred_store["test_labels"], y), dim=0
|
141 |
+
)
|
142 |
+
for d, t, p, o in zip(x, y, argmax_pred, y_hat):
|
143 |
+
if p.eq(t.view_as(p)).item() == False:
|
144 |
+
self.pred_store["test_incorrect"].append(
|
145 |
+
(d.cpu(), t, p, o[p.item()].cpu())
|
146 |
+
)
|
147 |
+
|
148 |
+
return loss
|
149 |
+
|
150 |
+
|
151 |
+
def configure_optimizers(self):
|
152 |
+
return torch.optim.Adam(self.parameters(), lr=0.02)
|
153 |
+
|
154 |
+
def LitResNet18():
|
155 |
+
return LitResNet(BasicBlock, [2, 2, 2, 2])
|
156 |
+
|
157 |
+
def LitResNet34():
|
158 |
+
return LitResNet(BasicBlock, [3, 4, 6, 3])
|
159 |
+
|
160 |
+
|
161 |
+
|
162 |
+
|
utilities/transforms.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Third-Party Imports
|
2 |
+
import torch
|
3 |
+
import albumentations as A
|
4 |
+
from albumentations.pytorch import ToTensorV2
|
5 |
+
|
6 |
+
|
7 |
+
# Train Phase transformations
|
8 |
+
train_set_transforms = {
|
9 |
+
'randomcrop': A.RandomCrop(height=32, width=32, p=0.2),
|
10 |
+
'horizontalflip': A.HorizontalFlip(),
|
11 |
+
'cutout': A.CoarseDropout(max_holes=1, max_height=16, max_width=16, min_holes=1, min_height=1, min_width=1, fill_value=[0.49139968*255, 0.48215827*255 ,0.44653124*255], mask_fill_value=None),
|
12 |
+
'normalize': A.Normalize((0.49139968, 0.48215827, 0.44653124), (0.24703233, 0.24348505, 0.26158768)),
|
13 |
+
'standardize': ToTensorV2(),
|
14 |
+
}
|
15 |
+
|
16 |
+
# Test Phase transformations
|
17 |
+
test_set_transforms = {
|
18 |
+
'normalize': A.Normalize((0.49139968, 0.48215827, 0.44653124), (0.24703233, 0.24348505, 0.26158768)),
|
19 |
+
'standardize': ToTensorV2()
|
20 |
+
}
|
utilities/visualise.py
ADDED
@@ -0,0 +1,412 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import matplotlib.pyplot as plt
|
2 |
+
from torchvision import transforms
|
3 |
+
import torch
|
4 |
+
|
5 |
+
|
6 |
+
def plot_class_label_counts(data_loader, classes):
|
7 |
+
class_counts = {}
|
8 |
+
for class_name in classes:
|
9 |
+
class_counts[class_name] = 0
|
10 |
+
for _, batch_label in data_loader:
|
11 |
+
for label in batch_label:
|
12 |
+
class_counts[classes[label.item()]] += 1
|
13 |
+
|
14 |
+
fig = plt.figure()
|
15 |
+
plt.suptitle("Class Distribution")
|
16 |
+
plt.bar(range(len(class_counts)), list(class_counts.values()))
|
17 |
+
plt.xticks(range(len(class_counts)), list(class_counts.keys()), rotation=90)
|
18 |
+
plt.tight_layout()
|
19 |
+
plt.show()
|
20 |
+
|
21 |
+
|
22 |
+
def plot_data_samples(data_loader, classes):
|
23 |
+
batch_data, batch_label = next(iter(data_loader))
|
24 |
+
|
25 |
+
fig = plt.figure()
|
26 |
+
plt.suptitle("Data Samples with Labels post Transforms")
|
27 |
+
for i in range(12):
|
28 |
+
plt.subplot(3, 4, i + 1)
|
29 |
+
plt.tight_layout()
|
30 |
+
# unnormalize = T.Normalize((-mean / std).tolist(), (1.0 / std).tolist())
|
31 |
+
unnormalized = transforms.Normalize(
|
32 |
+
(-1.98947368, -1.98436214, -1.71072797), (4.048583, 4.11522634, 3.83141762)
|
33 |
+
)(batch_data[i])
|
34 |
+
plt.imshow(transforms.ToPILImage()(unnormalized))
|
35 |
+
plt.title(
|
36 |
+
classes[batch_label[i].item()],
|
37 |
+
)
|
38 |
+
|
39 |
+
plt.xticks([])
|
40 |
+
plt.yticks([])
|
41 |
+
|
42 |
+
|
43 |
+
def plot_model_training_curves(train_accs, test_accs, train_losses, test_losses):
|
44 |
+
fig, axs = plt.subplots(2, 2, figsize=(15, 10))
|
45 |
+
axs[0, 0].plot(train_losses)
|
46 |
+
axs[0, 0].set_title("Training Loss")
|
47 |
+
axs[1, 0].plot(train_accs)
|
48 |
+
axs[1, 0].set_title("Training Accuracy")
|
49 |
+
axs[0, 1].plot(test_losses)
|
50 |
+
axs[0, 1].set_title("Test Loss")
|
51 |
+
axs[1, 1].plot(test_accs)
|
52 |
+
axs[1, 1].set_title("Test Accuracy")
|
53 |
+
plt.plot()
|
54 |
+
|
55 |
+
|
56 |
+
def plot_incorrect_preds(incorrect, classes, num_imgs):
|
57 |
+
# num_imgs is a multiple of 5
|
58 |
+
assert num_imgs % 5 == 0
|
59 |
+
assert len(incorrect) >= num_imgs
|
60 |
+
|
61 |
+
# incorrect (data, target, pred, output)
|
62 |
+
print(f"Total Incorrect Predictions {len(incorrect)}")
|
63 |
+
fig = plt.figure(figsize=(10, num_imgs // 2))
|
64 |
+
plt.suptitle("Target | Predicted Label")
|
65 |
+
for i in range(num_imgs):
|
66 |
+
plt.subplot(num_imgs // 5, 5, i + 1, aspect="auto")
|
67 |
+
|
68 |
+
# unnormalize = T.Normalize((-mean / std).tolist(), (1.0 / std).tolist())
|
69 |
+
unnormalized = transforms.Normalize(
|
70 |
+
(-1.98947368, -1.98436214, -1.71072797), (4.048583, 4.11522634, 3.83141762)
|
71 |
+
)(incorrect[i][0])
|
72 |
+
plt.imshow(transforms.ToPILImage()(unnormalized))
|
73 |
+
plt.title(
|
74 |
+
f"{classes[incorrect[i][1].item()]}|{classes[incorrect[i][2].item()]}",
|
75 |
+
# fontsize=8,
|
76 |
+
)
|
77 |
+
plt.xticks([])
|
78 |
+
plt.yticks([])
|
79 |
+
plt.tight_layout()
|
80 |
+
|
81 |
+
|
82 |
+
def display_cifar_data_samples(data_set, number_of_samples: int, classes: list):
|
83 |
+
"""
|
84 |
+
Function to display samples for data_set
|
85 |
+
:param data_set: Train or Test data_set transformed to Tensor
|
86 |
+
:param number_of_samples: Number of samples to be displayed
|
87 |
+
:param classes: Name of classes to be displayed
|
88 |
+
"""
|
89 |
+
# Get batch from the data_set
|
90 |
+
batch_data = []
|
91 |
+
batch_label = []
|
92 |
+
for count, item in enumerate(data_set):
|
93 |
+
if not count <= number_of_samples:
|
94 |
+
break
|
95 |
+
batch_data.append(item[0])
|
96 |
+
batch_label.append(item[1])
|
97 |
+
batch_data = torch.stack(batch_data, dim=0).numpy()
|
98 |
+
|
99 |
+
# Plot the samples from the batch
|
100 |
+
fig = plt.figure()
|
101 |
+
x_count = 5
|
102 |
+
y_count = 1 if number_of_samples <= 5 else math.floor(number_of_samples / x_count)
|
103 |
+
|
104 |
+
for i in range(number_of_samples):
|
105 |
+
plt.subplot(y_count, x_count, i + 1)
|
106 |
+
plt.tight_layout()
|
107 |
+
plt.imshow(np.transpose(batch_data[i].squeeze(), (1, 2, 0)))
|
108 |
+
plt.title(classes[batch_label[i]])
|
109 |
+
plt.xticks([])
|
110 |
+
plt.yticks([])
|
111 |
+
|
112 |
+
|
113 |
+
# ---------------------------- MISCLASSIFIED DATA ----------------------------
|
114 |
+
def display_cifar_misclassified_data(data: list,
|
115 |
+
classes: list[str],
|
116 |
+
inv_normalize: transforms.Normalize,
|
117 |
+
number_of_samples: int = 10):
|
118 |
+
"""
|
119 |
+
Function to plot images with labels
|
120 |
+
:param data: List[Tuple(image, label)]
|
121 |
+
:param classes: Name of classes in the dataset
|
122 |
+
:param inv_normalize: Mean and Standard deviation values of the dataset
|
123 |
+
:param number_of_samples: Number of images to print
|
124 |
+
"""
|
125 |
+
fig = plt.figure(figsize=(10, 10))
|
126 |
+
|
127 |
+
x_count = 5
|
128 |
+
y_count = 1 if number_of_samples <= 5 else math.floor(number_of_samples / x_count)
|
129 |
+
|
130 |
+
for i in range(number_of_samples):
|
131 |
+
plt.subplot(y_count, x_count, i + 1)
|
132 |
+
img = data[i][0].squeeze().to('cpu')
|
133 |
+
img = inv_normalize(img)
|
134 |
+
plt.imshow(np.transpose(img, (1, 2, 0)))
|
135 |
+
plt.title(r"Correct: " + classes[data[i][1].item()] + '\n' + 'Output: ' + classes[data[i][2].item()])
|
136 |
+
plt.xticks([])
|
137 |
+
plt.yticks([])
|
138 |
+
|
139 |
+
|
140 |
+
def display_mnist_misclassified_data(data: list,
|
141 |
+
number_of_samples: int = 10):
|
142 |
+
"""
|
143 |
+
Function to plot images with labels
|
144 |
+
:param data: List[Tuple(image, label)]
|
145 |
+
:param number_of_samples: Number of images to print
|
146 |
+
"""
|
147 |
+
fig = plt.figure(figsize=(8, 5))
|
148 |
+
|
149 |
+
x_count = 5
|
150 |
+
y_count = 1 if number_of_samples <= 5 else math.floor(number_of_samples / x_count)
|
151 |
+
|
152 |
+
for i in range(number_of_samples):
|
153 |
+
plt.subplot(y_count, x_count, i + 1)
|
154 |
+
img = data[i][0].squeeze(0).to('cpu')
|
155 |
+
plt.imshow(np.transpose(img, (1, 2, 0)), cmap='gray')
|
156 |
+
plt.title(r"Correct: " + str(data[i][1].item()) + '\n' + 'Output: ' + str(data[i][2].item()))
|
157 |
+
plt.xticks([])
|
158 |
+
plt.yticks([])
|
159 |
+
|
160 |
+
|
161 |
+
# ---------------------------- AUGMENTATION SAMPLES ----------------------------
|
162 |
+
def visualize_cifar_augmentation(data_set, data_transforms):
|
163 |
+
"""
|
164 |
+
Function to visualize the augmented data
|
165 |
+
:param data_set: Dataset without transformations
|
166 |
+
:param data_transforms: Dictionary of transforms
|
167 |
+
"""
|
168 |
+
sample, label = data_set[6]
|
169 |
+
total_augmentations = len(data_transforms)
|
170 |
+
|
171 |
+
fig = plt.figure(figsize=(10, 5))
|
172 |
+
for count, (key, trans) in enumerate(data_transforms.items()):
|
173 |
+
if count == total_augmentations - 1:
|
174 |
+
break
|
175 |
+
plt.subplot(math.ceil(total_augmentations / 5), 5, count + 1)
|
176 |
+
augmented = trans(image=sample)['image']
|
177 |
+
plt.imshow(augmented)
|
178 |
+
plt.title(key)
|
179 |
+
plt.xticks([])
|
180 |
+
plt.yticks([])
|
181 |
+
|
182 |
+
|
183 |
+
def visualize_mnist_augmentation(data_set, data_transforms):
|
184 |
+
"""
|
185 |
+
Function to visualize the augmented data
|
186 |
+
:param data_set: Dataset to visualize the augmentations
|
187 |
+
:param data_transforms: Dictionary of transforms
|
188 |
+
"""
|
189 |
+
sample, label = data_set[6]
|
190 |
+
total_augmentations = len(data_transforms)
|
191 |
+
|
192 |
+
fig = plt.figure(figsize=(10, 5))
|
193 |
+
for count, (key, trans) in enumerate(data_transforms.items()):
|
194 |
+
if count == total_augmentations - 1:
|
195 |
+
break
|
196 |
+
plt.subplot(math.ceil(total_augmentations / 5), 5, count + 1)
|
197 |
+
img = trans(sample).to('cpu')
|
198 |
+
plt.imshow(np.transpose(img, (1, 2, 0)), cmap='gray')
|
199 |
+
plt.title(key)
|
200 |
+
plt.xticks([])
|
201 |
+
plt.yticks([])
|
202 |
+
|
203 |
+
|
204 |
+
# ---------------------------- LOSS AND ACCURACIES ----------------------------
|
205 |
+
def display_loss_and_accuracies(train_losses: list,
|
206 |
+
train_acc: list,
|
207 |
+
test_losses: list,
|
208 |
+
test_acc: list,
|
209 |
+
plot_size: tuple = (10, 10)) -> NoReturn:
|
210 |
+
"""
|
211 |
+
Function to display training and test information(losses and accuracies)
|
212 |
+
:param train_losses: List containing training loss of each epoch
|
213 |
+
:param train_acc: List containing training accuracy of each epoch
|
214 |
+
:param test_losses: List containing test loss of each epoch
|
215 |
+
:param test_acc: List containing test accuracy of each epoch
|
216 |
+
:param plot_size: Size of the plot
|
217 |
+
"""
|
218 |
+
# Create a plot of 2x2 of size
|
219 |
+
fig, axs = plt.subplots(2, 2, figsize=plot_size)
|
220 |
+
|
221 |
+
# Plot the training loss and accuracy for each epoch
|
222 |
+
axs[0, 0].plot(train_losses)
|
223 |
+
axs[0, 0].set_title("Training Loss")
|
224 |
+
axs[1, 0].plot(train_acc)
|
225 |
+
axs[1, 0].set_title("Training Accuracy")
|
226 |
+
|
227 |
+
# Plot the test loss and accuracy for each epoch
|
228 |
+
axs[0, 1].plot(test_losses)
|
229 |
+
axs[0, 1].set_title("Test Loss")
|
230 |
+
axs[1, 1].plot(test_acc)
|
231 |
+
axs[1, 1].set_title("Test Accuracy")
|
232 |
+
|
233 |
+
|
234 |
+
# ---------------------------- Feature Maps and Kernels ----------------------------
|
235 |
+
|
236 |
+
@dataclass
|
237 |
+
class ConvLayerInfo:
|
238 |
+
"""
|
239 |
+
Data Class to store Conv layer's information
|
240 |
+
"""
|
241 |
+
layer_number: int
|
242 |
+
weights: torch.nn.parameter.Parameter
|
243 |
+
layer_info: torch.nn.modules.conv.Conv2d
|
244 |
+
|
245 |
+
|
246 |
+
class FeatureMapVisualizer:
|
247 |
+
"""
|
248 |
+
Class to visualize Feature Map of the Layers
|
249 |
+
"""
|
250 |
+
|
251 |
+
def __init__(self, model):
|
252 |
+
"""
|
253 |
+
Contructor
|
254 |
+
:param model: Model Architecture
|
255 |
+
"""
|
256 |
+
self.conv_layers = []
|
257 |
+
self.outputs = []
|
258 |
+
self.layerwise_kernels = None
|
259 |
+
|
260 |
+
# Disect the model
|
261 |
+
counter = 0
|
262 |
+
model_children = model.children()
|
263 |
+
for children in model_children:
|
264 |
+
if type(children) == nn.Sequential:
|
265 |
+
for child in children:
|
266 |
+
if type(child) == nn.Conv2d:
|
267 |
+
counter += 1
|
268 |
+
self.conv_layers.append(ConvLayerInfo(layer_number=counter,
|
269 |
+
weights=child.weight,
|
270 |
+
layer_info=child)
|
271 |
+
)
|
272 |
+
|
273 |
+
def get_model_weights(self):
|
274 |
+
"""
|
275 |
+
Method to get the model weights
|
276 |
+
"""
|
277 |
+
model_weights = [layer.weights for layer in self.conv_layers]
|
278 |
+
return model_weights
|
279 |
+
|
280 |
+
def get_conv_layers(self):
|
281 |
+
"""
|
282 |
+
Get the convolution layers
|
283 |
+
"""
|
284 |
+
conv_layers = [layer.layer_info for layer in self.conv_layers]
|
285 |
+
return conv_layers
|
286 |
+
|
287 |
+
def get_total_conv_layers(self) -> int:
|
288 |
+
"""
|
289 |
+
Get total number of convolution layers
|
290 |
+
"""
|
291 |
+
out = self.get_conv_layers()
|
292 |
+
return len(out)
|
293 |
+
|
294 |
+
def feature_maps_of_all_kernels(self, image: torch.Tensor) -> dict:
|
295 |
+
"""
|
296 |
+
Get feature maps from all the kernels of all the layers
|
297 |
+
:param image: Image to be passed to the network
|
298 |
+
"""
|
299 |
+
image = image.unsqueeze(0)
|
300 |
+
image = image.to('cpu')
|
301 |
+
|
302 |
+
outputs = {}
|
303 |
+
|
304 |
+
layers = self.get_conv_layers()
|
305 |
+
for index, layer in enumerate(layers):
|
306 |
+
image = layer(image)
|
307 |
+
outputs[str(layer)] = image
|
308 |
+
self.outputs = outputs
|
309 |
+
return outputs
|
310 |
+
|
311 |
+
def visualize_feature_map_of_kernel(self, image: torch.Tensor, kernel_number: int) -> None:
|
312 |
+
"""
|
313 |
+
Function to visualize feature map of kernel number from each layer
|
314 |
+
:param image: Image passed to the network
|
315 |
+
:param kernel_number: Number of kernel in each layer (Should be less than or equal to the minimum number of kernel in the network)
|
316 |
+
"""
|
317 |
+
# List to store processed feature maps
|
318 |
+
processed = []
|
319 |
+
|
320 |
+
# Get feature maps from all kernels of all the conv layers
|
321 |
+
outputs = self.feature_maps_of_all_kernels(image)
|
322 |
+
|
323 |
+
# Extract the n_th kernel's output from each layer and convert it to grayscale
|
324 |
+
for feature_map in outputs.values():
|
325 |
+
try:
|
326 |
+
feature_map = feature_map[0][kernel_number]
|
327 |
+
except IndexError:
|
328 |
+
print("Filter number should be less than the minimum number of channels in a network")
|
329 |
+
break
|
330 |
+
finally:
|
331 |
+
gray_scale = feature_map / feature_map.shape[0]
|
332 |
+
processed.append(gray_scale.data.numpy())
|
333 |
+
|
334 |
+
# Plot the Feature maps with layer and kernel number
|
335 |
+
x_range = len(outputs) // 5 + 4
|
336 |
+
fig = plt.figure(figsize=(10, 10))
|
337 |
+
for i in range(len(processed)):
|
338 |
+
a = fig.add_subplot(x_range, 5, i + 1)
|
339 |
+
imgplot = plt.imshow(processed[i])
|
340 |
+
a.axis("off")
|
341 |
+
title = f"{list(outputs.keys())[i].split('(')[0]}_l{i + 1}_k{kernel_number}"
|
342 |
+
a.set_title(title, fontsize=10)
|
343 |
+
|
344 |
+
def get_max_kernel_number(self):
|
345 |
+
"""
|
346 |
+
Function to get maximum number of kernels in the network (for a layer)
|
347 |
+
"""
|
348 |
+
layers = self.get_conv_layers()
|
349 |
+
channels = [layer.out_channels for layer in layers]
|
350 |
+
self.layerwise_kernels = channels
|
351 |
+
return max(channels)
|
352 |
+
|
353 |
+
def visualize_kernels_from_layer(self, layer_number: int):
|
354 |
+
"""
|
355 |
+
Visualize Kernels from a layer
|
356 |
+
:param layer_number: Number of layer from which kernels are to be visualized
|
357 |
+
"""
|
358 |
+
# Get the kernels number for each layer
|
359 |
+
self.get_max_kernel_number()
|
360 |
+
|
361 |
+
# Zero Indexing
|
362 |
+
layer_number = layer_number - 1
|
363 |
+
_kernels = self.layerwise_kernels[layer_number]
|
364 |
+
|
365 |
+
grid = math.ceil(math.sqrt(_kernels))
|
366 |
+
|
367 |
+
plt.figure(figsize=(5, 4))
|
368 |
+
model_weights = self.get_model_weights()
|
369 |
+
_layer_weights = model_weights[layer_number].cpu()
|
370 |
+
for i, filter in enumerate(_layer_weights):
|
371 |
+
plt.subplot(grid, grid, i + 1)
|
372 |
+
plt.imshow(filter[0, :, :].detach(), cmap='gray')
|
373 |
+
plt.axis('off')
|
374 |
+
plt.show()
|
375 |
+
|
376 |
+
|
377 |
+
# ---------------------------- Confusion Matrix ----------------------------
|
378 |
+
def visualize_confusion_matrix(classes: list[str], device: str, model: 'DL Model',
|
379 |
+
test_loader: torch.utils.data.DataLoader):
|
380 |
+
"""
|
381 |
+
Function to generate and visualize confusion matrix
|
382 |
+
:param classes: List of class names
|
383 |
+
:param device: cuda/cpu
|
384 |
+
:param model: Model Architecture
|
385 |
+
:param test_loader: DataLoader for test set
|
386 |
+
"""
|
387 |
+
nb_classes = len(classes)
|
388 |
+
device = 'cuda'
|
389 |
+
cm = torch.zeros(nb_classes, nb_classes)
|
390 |
+
|
391 |
+
model.eval()
|
392 |
+
with torch.no_grad():
|
393 |
+
for inputs, labels in test_loader:
|
394 |
+
inputs = inputs.to(device)
|
395 |
+
labels = labels.to(device)
|
396 |
+
model = model.to(device)
|
397 |
+
|
398 |
+
preds = model(inputs)
|
399 |
+
preds = preds.argmax(dim=1)
|
400 |
+
|
401 |
+
for t, p in zip(labels.view(-1), preds.view(-1)):
|
402 |
+
cm[t, p] = cm[t, p] + 1
|
403 |
+
|
404 |
+
# Build confusion matrix
|
405 |
+
labels = labels.to('cpu')
|
406 |
+
preds = preds.to('cpu')
|
407 |
+
cf_matrix = confusion_matrix(labels, preds)
|
408 |
+
df_cm = pd.DataFrame(cf_matrix / np.sum(cf_matrix, axis=1)[:, None],
|
409 |
+
index=[i for i in classes],
|
410 |
+
columns=[i for i in classes])
|
411 |
+
plt.figure(figsize=(12, 7))
|
412 |
+
sn.heatmap(df_cm, annot=True)
|