Mojo
commited on
Commit
·
923fe1a
1
Parent(s):
9efd6ad
Added new files
Browse files- utilities/visualise.py +1 -335
utilities/visualise.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
import matplotlib.pyplot as plt
|
2 |
from torchvision import transforms
|
3 |
-
import torch
|
4 |
|
5 |
|
6 |
def plot_class_label_counts(data_loader, classes):
|
@@ -76,337 +75,4 @@ def plot_incorrect_preds(incorrect, classes, num_imgs):
|
|
76 |
)
|
77 |
plt.xticks([])
|
78 |
plt.yticks([])
|
79 |
-
plt.tight_layout()
|
80 |
-
|
81 |
-
|
82 |
-
def display_cifar_data_samples(data_set, number_of_samples: int, classes: list):
|
83 |
-
"""
|
84 |
-
Function to display samples for data_set
|
85 |
-
:param data_set: Train or Test data_set transformed to Tensor
|
86 |
-
:param number_of_samples: Number of samples to be displayed
|
87 |
-
:param classes: Name of classes to be displayed
|
88 |
-
"""
|
89 |
-
# Get batch from the data_set
|
90 |
-
batch_data = []
|
91 |
-
batch_label = []
|
92 |
-
for count, item in enumerate(data_set):
|
93 |
-
if not count <= number_of_samples:
|
94 |
-
break
|
95 |
-
batch_data.append(item[0])
|
96 |
-
batch_label.append(item[1])
|
97 |
-
batch_data = torch.stack(batch_data, dim=0).numpy()
|
98 |
-
|
99 |
-
# Plot the samples from the batch
|
100 |
-
fig = plt.figure()
|
101 |
-
x_count = 5
|
102 |
-
y_count = 1 if number_of_samples <= 5 else math.floor(number_of_samples / x_count)
|
103 |
-
|
104 |
-
for i in range(number_of_samples):
|
105 |
-
plt.subplot(y_count, x_count, i + 1)
|
106 |
-
plt.tight_layout()
|
107 |
-
plt.imshow(np.transpose(batch_data[i].squeeze(), (1, 2, 0)))
|
108 |
-
plt.title(classes[batch_label[i]])
|
109 |
-
plt.xticks([])
|
110 |
-
plt.yticks([])
|
111 |
-
|
112 |
-
|
113 |
-
# ---------------------------- MISCLASSIFIED DATA ----------------------------
|
114 |
-
def display_cifar_misclassified_data(data: list,
|
115 |
-
classes: list[str],
|
116 |
-
inv_normalize: transforms.Normalize,
|
117 |
-
number_of_samples: int = 10):
|
118 |
-
"""
|
119 |
-
Function to plot images with labels
|
120 |
-
:param data: List[Tuple(image, label)]
|
121 |
-
:param classes: Name of classes in the dataset
|
122 |
-
:param inv_normalize: Mean and Standard deviation values of the dataset
|
123 |
-
:param number_of_samples: Number of images to print
|
124 |
-
"""
|
125 |
-
fig = plt.figure(figsize=(10, 10))
|
126 |
-
|
127 |
-
x_count = 5
|
128 |
-
y_count = 1 if number_of_samples <= 5 else math.floor(number_of_samples / x_count)
|
129 |
-
|
130 |
-
for i in range(number_of_samples):
|
131 |
-
plt.subplot(y_count, x_count, i + 1)
|
132 |
-
img = data[i][0].squeeze().to('cpu')
|
133 |
-
img = inv_normalize(img)
|
134 |
-
plt.imshow(np.transpose(img, (1, 2, 0)))
|
135 |
-
plt.title(r"Correct: " + classes[data[i][1].item()] + '\n' + 'Output: ' + classes[data[i][2].item()])
|
136 |
-
plt.xticks([])
|
137 |
-
plt.yticks([])
|
138 |
-
|
139 |
-
|
140 |
-
def display_mnist_misclassified_data(data: list,
|
141 |
-
number_of_samples: int = 10):
|
142 |
-
"""
|
143 |
-
Function to plot images with labels
|
144 |
-
:param data: List[Tuple(image, label)]
|
145 |
-
:param number_of_samples: Number of images to print
|
146 |
-
"""
|
147 |
-
fig = plt.figure(figsize=(8, 5))
|
148 |
-
|
149 |
-
x_count = 5
|
150 |
-
y_count = 1 if number_of_samples <= 5 else math.floor(number_of_samples / x_count)
|
151 |
-
|
152 |
-
for i in range(number_of_samples):
|
153 |
-
plt.subplot(y_count, x_count, i + 1)
|
154 |
-
img = data[i][0].squeeze(0).to('cpu')
|
155 |
-
plt.imshow(np.transpose(img, (1, 2, 0)), cmap='gray')
|
156 |
-
plt.title(r"Correct: " + str(data[i][1].item()) + '\n' + 'Output: ' + str(data[i][2].item()))
|
157 |
-
plt.xticks([])
|
158 |
-
plt.yticks([])
|
159 |
-
|
160 |
-
|
161 |
-
# ---------------------------- AUGMENTATION SAMPLES ----------------------------
|
162 |
-
def visualize_cifar_augmentation(data_set, data_transforms):
|
163 |
-
"""
|
164 |
-
Function to visualize the augmented data
|
165 |
-
:param data_set: Dataset without transformations
|
166 |
-
:param data_transforms: Dictionary of transforms
|
167 |
-
"""
|
168 |
-
sample, label = data_set[6]
|
169 |
-
total_augmentations = len(data_transforms)
|
170 |
-
|
171 |
-
fig = plt.figure(figsize=(10, 5))
|
172 |
-
for count, (key, trans) in enumerate(data_transforms.items()):
|
173 |
-
if count == total_augmentations - 1:
|
174 |
-
break
|
175 |
-
plt.subplot(math.ceil(total_augmentations / 5), 5, count + 1)
|
176 |
-
augmented = trans(image=sample)['image']
|
177 |
-
plt.imshow(augmented)
|
178 |
-
plt.title(key)
|
179 |
-
plt.xticks([])
|
180 |
-
plt.yticks([])
|
181 |
-
|
182 |
-
|
183 |
-
def visualize_mnist_augmentation(data_set, data_transforms):
|
184 |
-
"""
|
185 |
-
Function to visualize the augmented data
|
186 |
-
:param data_set: Dataset to visualize the augmentations
|
187 |
-
:param data_transforms: Dictionary of transforms
|
188 |
-
"""
|
189 |
-
sample, label = data_set[6]
|
190 |
-
total_augmentations = len(data_transforms)
|
191 |
-
|
192 |
-
fig = plt.figure(figsize=(10, 5))
|
193 |
-
for count, (key, trans) in enumerate(data_transforms.items()):
|
194 |
-
if count == total_augmentations - 1:
|
195 |
-
break
|
196 |
-
plt.subplot(math.ceil(total_augmentations / 5), 5, count + 1)
|
197 |
-
img = trans(sample).to('cpu')
|
198 |
-
plt.imshow(np.transpose(img, (1, 2, 0)), cmap='gray')
|
199 |
-
plt.title(key)
|
200 |
-
plt.xticks([])
|
201 |
-
plt.yticks([])
|
202 |
-
|
203 |
-
|
204 |
-
# ---------------------------- LOSS AND ACCURACIES ----------------------------
|
205 |
-
def display_loss_and_accuracies(train_losses: list,
|
206 |
-
train_acc: list,
|
207 |
-
test_losses: list,
|
208 |
-
test_acc: list,
|
209 |
-
plot_size: tuple = (10, 10)):
|
210 |
-
"""
|
211 |
-
Function to display training and test information(losses and accuracies)
|
212 |
-
:param train_losses: List containing training loss of each epoch
|
213 |
-
:param train_acc: List containing training accuracy of each epoch
|
214 |
-
:param test_losses: List containing test loss of each epoch
|
215 |
-
:param test_acc: List containing test accuracy of each epoch
|
216 |
-
:param plot_size: Size of the plot
|
217 |
-
"""
|
218 |
-
# Create a plot of 2x2 of size
|
219 |
-
fig, axs = plt.subplots(2, 2, figsize=plot_size)
|
220 |
-
|
221 |
-
# Plot the training loss and accuracy for each epoch
|
222 |
-
axs[0, 0].plot(train_losses)
|
223 |
-
axs[0, 0].set_title("Training Loss")
|
224 |
-
axs[1, 0].plot(train_acc)
|
225 |
-
axs[1, 0].set_title("Training Accuracy")
|
226 |
-
|
227 |
-
# Plot the test loss and accuracy for each epoch
|
228 |
-
axs[0, 1].plot(test_losses)
|
229 |
-
axs[0, 1].set_title("Test Loss")
|
230 |
-
axs[1, 1].plot(test_acc)
|
231 |
-
axs[1, 1].set_title("Test Accuracy")
|
232 |
-
|
233 |
-
|
234 |
-
# ---------------------------- Feature Maps and Kernels ----------------------------
|
235 |
-
|
236 |
-
@dataclass
|
237 |
-
class ConvLayerInfo:
|
238 |
-
"""
|
239 |
-
Data Class to store Conv layer's information
|
240 |
-
"""
|
241 |
-
layer_number: int
|
242 |
-
weights: torch.nn.parameter.Parameter
|
243 |
-
layer_info: torch.nn.modules.conv.Conv2d
|
244 |
-
|
245 |
-
|
246 |
-
class FeatureMapVisualizer:
|
247 |
-
"""
|
248 |
-
Class to visualize Feature Map of the Layers
|
249 |
-
"""
|
250 |
-
|
251 |
-
def __init__(self, model):
|
252 |
-
"""
|
253 |
-
Contructor
|
254 |
-
:param model: Model Architecture
|
255 |
-
"""
|
256 |
-
self.conv_layers = []
|
257 |
-
self.outputs = []
|
258 |
-
self.layerwise_kernels = None
|
259 |
-
|
260 |
-
# Disect the model
|
261 |
-
counter = 0
|
262 |
-
model_children = model.children()
|
263 |
-
for children in model_children:
|
264 |
-
if type(children) == nn.Sequential:
|
265 |
-
for child in children:
|
266 |
-
if type(child) == nn.Conv2d:
|
267 |
-
counter += 1
|
268 |
-
self.conv_layers.append(ConvLayerInfo(layer_number=counter,
|
269 |
-
weights=child.weight,
|
270 |
-
layer_info=child)
|
271 |
-
)
|
272 |
-
|
273 |
-
def get_model_weights(self):
|
274 |
-
"""
|
275 |
-
Method to get the model weights
|
276 |
-
"""
|
277 |
-
model_weights = [layer.weights for layer in self.conv_layers]
|
278 |
-
return model_weights
|
279 |
-
|
280 |
-
def get_conv_layers(self):
|
281 |
-
"""
|
282 |
-
Get the convolution layers
|
283 |
-
"""
|
284 |
-
conv_layers = [layer.layer_info for layer in self.conv_layers]
|
285 |
-
return conv_layers
|
286 |
-
|
287 |
-
def get_total_conv_layers(self) -> int:
|
288 |
-
"""
|
289 |
-
Get total number of convolution layers
|
290 |
-
"""
|
291 |
-
out = self.get_conv_layers()
|
292 |
-
return len(out)
|
293 |
-
|
294 |
-
def feature_maps_of_all_kernels(self, image: torch.Tensor) -> dict:
|
295 |
-
"""
|
296 |
-
Get feature maps from all the kernels of all the layers
|
297 |
-
:param image: Image to be passed to the network
|
298 |
-
"""
|
299 |
-
image = image.unsqueeze(0)
|
300 |
-
image = image.to('cpu')
|
301 |
-
|
302 |
-
outputs = {}
|
303 |
-
|
304 |
-
layers = self.get_conv_layers()
|
305 |
-
for index, layer in enumerate(layers):
|
306 |
-
image = layer(image)
|
307 |
-
outputs[str(layer)] = image
|
308 |
-
self.outputs = outputs
|
309 |
-
return outputs
|
310 |
-
|
311 |
-
def visualize_feature_map_of_kernel(self, image: torch.Tensor, kernel_number: int) -> None:
|
312 |
-
"""
|
313 |
-
Function to visualize feature map of kernel number from each layer
|
314 |
-
:param image: Image passed to the network
|
315 |
-
:param kernel_number: Number of kernel in each layer (Should be less than or equal to the minimum number of kernel in the network)
|
316 |
-
"""
|
317 |
-
# List to store processed feature maps
|
318 |
-
processed = []
|
319 |
-
|
320 |
-
# Get feature maps from all kernels of all the conv layers
|
321 |
-
outputs = self.feature_maps_of_all_kernels(image)
|
322 |
-
|
323 |
-
# Extract the n_th kernel's output from each layer and convert it to grayscale
|
324 |
-
for feature_map in outputs.values():
|
325 |
-
try:
|
326 |
-
feature_map = feature_map[0][kernel_number]
|
327 |
-
except IndexError:
|
328 |
-
print("Filter number should be less than the minimum number of channels in a network")
|
329 |
-
break
|
330 |
-
finally:
|
331 |
-
gray_scale = feature_map / feature_map.shape[0]
|
332 |
-
processed.append(gray_scale.data.numpy())
|
333 |
-
|
334 |
-
# Plot the Feature maps with layer and kernel number
|
335 |
-
x_range = len(outputs) // 5 + 4
|
336 |
-
fig = plt.figure(figsize=(10, 10))
|
337 |
-
for i in range(len(processed)):
|
338 |
-
a = fig.add_subplot(x_range, 5, i + 1)
|
339 |
-
imgplot = plt.imshow(processed[i])
|
340 |
-
a.axis("off")
|
341 |
-
title = f"{list(outputs.keys())[i].split('(')[0]}_l{i + 1}_k{kernel_number}"
|
342 |
-
a.set_title(title, fontsize=10)
|
343 |
-
|
344 |
-
def get_max_kernel_number(self):
|
345 |
-
"""
|
346 |
-
Function to get maximum number of kernels in the network (for a layer)
|
347 |
-
"""
|
348 |
-
layers = self.get_conv_layers()
|
349 |
-
channels = [layer.out_channels for layer in layers]
|
350 |
-
self.layerwise_kernels = channels
|
351 |
-
return max(channels)
|
352 |
-
|
353 |
-
def visualize_kernels_from_layer(self, layer_number: int):
|
354 |
-
"""
|
355 |
-
Visualize Kernels from a layer
|
356 |
-
:param layer_number: Number of layer from which kernels are to be visualized
|
357 |
-
"""
|
358 |
-
# Get the kernels number for each layer
|
359 |
-
self.get_max_kernel_number()
|
360 |
-
|
361 |
-
# Zero Indexing
|
362 |
-
layer_number = layer_number - 1
|
363 |
-
_kernels = self.layerwise_kernels[layer_number]
|
364 |
-
|
365 |
-
grid = math.ceil(math.sqrt(_kernels))
|
366 |
-
|
367 |
-
plt.figure(figsize=(5, 4))
|
368 |
-
model_weights = self.get_model_weights()
|
369 |
-
_layer_weights = model_weights[layer_number].cpu()
|
370 |
-
for i, filter in enumerate(_layer_weights):
|
371 |
-
plt.subplot(grid, grid, i + 1)
|
372 |
-
plt.imshow(filter[0, :, :].detach(), cmap='gray')
|
373 |
-
plt.axis('off')
|
374 |
-
plt.show()
|
375 |
-
|
376 |
-
|
377 |
-
# ---------------------------- Confusion Matrix ----------------------------
|
378 |
-
def visualize_confusion_matrix(classes: list[str], device: str, model: 'DL Model',
|
379 |
-
test_loader: torch.utils.data.DataLoader):
|
380 |
-
"""
|
381 |
-
Function to generate and visualize confusion matrix
|
382 |
-
:param classes: List of class names
|
383 |
-
:param device: cuda/cpu
|
384 |
-
:param model: Model Architecture
|
385 |
-
:param test_loader: DataLoader for test set
|
386 |
-
"""
|
387 |
-
nb_classes = len(classes)
|
388 |
-
device = 'cuda'
|
389 |
-
cm = torch.zeros(nb_classes, nb_classes)
|
390 |
-
|
391 |
-
model.eval()
|
392 |
-
with torch.no_grad():
|
393 |
-
for inputs, labels in test_loader:
|
394 |
-
inputs = inputs.to(device)
|
395 |
-
labels = labels.to(device)
|
396 |
-
model = model.to(device)
|
397 |
-
|
398 |
-
preds = model(inputs)
|
399 |
-
preds = preds.argmax(dim=1)
|
400 |
-
|
401 |
-
for t, p in zip(labels.view(-1), preds.view(-1)):
|
402 |
-
cm[t, p] = cm[t, p] + 1
|
403 |
-
|
404 |
-
# Build confusion matrix
|
405 |
-
labels = labels.to('cpu')
|
406 |
-
preds = preds.to('cpu')
|
407 |
-
cf_matrix = confusion_matrix(labels, preds)
|
408 |
-
df_cm = pd.DataFrame(cf_matrix / np.sum(cf_matrix, axis=1)[:, None],
|
409 |
-
index=[i for i in classes],
|
410 |
-
columns=[i for i in classes])
|
411 |
-
plt.figure(figsize=(12, 7))
|
412 |
-
sn.heatmap(df_cm, annot=True)
|
|
|
1 |
import matplotlib.pyplot as plt
|
2 |
from torchvision import transforms
|
|
|
3 |
|
4 |
|
5 |
def plot_class_label_counts(data_loader, classes):
|
|
|
75 |
)
|
76 |
plt.xticks([])
|
77 |
plt.yticks([])
|
78 |
+
plt.tight_layout()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|