RUGAI / app.py
alanbarret
Update density calculation in image processing and enhance detection info format
d8ff59f
raw
history blame
7.11 kB
import gradio as gr
from ultralytics import YOLO
import cv2
import numpy as np
from PIL import Image
from sklearn.cluster import DBSCAN
# Load the YOLO model
model = YOLO('models/rugai_m_v2.pt')
def remove_overlapping_boxes(boxes, iou_threshold=0.3):
"""Remove overlapping boxes using IoU threshold."""
if not boxes:
return []
# Convert boxes to numpy array
boxes = np.array(boxes)
# Calculate areas
areas = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
# Sort by area (largest first)
indices = np.argsort(areas)[::-1]
keep = []
while indices.size > 0:
i = indices[0]
keep.append(i)
# Calculate IoU with remaining boxes
xx1 = np.maximum(boxes[i, 0], boxes[indices[1:], 0])
yy1 = np.maximum(boxes[i, 1], boxes[indices[1:], 1])
xx2 = np.minimum(boxes[i, 2], boxes[indices[1:], 2])
yy2 = np.minimum(boxes[i, 3], boxes[indices[1:], 3])
w = np.maximum(0, xx2 - xx1)
h = np.maximum(0, yy2 - yy1)
overlap = (w * h) / areas[indices[1:]]
# Keep boxes with IoU less than threshold
indices = indices[1:][overlap < iou_threshold]
return keep
def process_image(image, show_boxes=True):
# Convert PIL Image to numpy array if needed
if isinstance(image, Image.Image):
image = np.array(image)
# Run inference with specific parameters
results = model.predict(image, imgsz=320, conf=0.25, iou=0.9)[0]
# Lists to store center points of knots
centers_x = []
centers_y = []
# Process each result and extract boxes
boxes = [] # Store all boxes and their centers
height, width = image.shape[:2]
for box in results.boxes:
x1, y1, x2, y2 = box.xyxy[0].cpu().numpy()
x1, y1, x2, y2 = map(int, [x1, y1, x2, y2])
# Calculate box center
center_x = (x1 + x2) // 2
center_y = (y1 + y2) // 2
boxes.append({
'coords': (x1, y1, x2, y2),
'center': (center_x, center_y)
})
centers_x.append(center_x)
centers_y.append(center_y)
# Remove overlapping boxes
if boxes:
box_coords = [box['coords'] for box in boxes]
keep_indices = remove_overlapping_boxes(box_coords, iou_threshold=0.3)
boxes = [boxes[i] for i in keep_indices]
centers_x = [centers_x[i] for i in keep_indices]
centers_y = [centers_y[i] for i in keep_indices]
# Sort centers
centers_y.sort()
centers_x.sort()
# Set tolerances based on average knot size
if len(boxes) > 0:
avg_width = sum((b['coords'][2] - b['coords'][0]) for b in boxes) / len(boxes)
avg_height = sum((b['coords'][3] - b['coords'][1]) for b in boxes) / len(boxes)
x_tolerance = int(avg_width * 0.22)
y_tolerance = int(avg_height * 0.22)
else:
x_tolerance = y_tolerance = 5
# Find representative points for rows and columns using DBSCAN
rows = []
cols = []
# Cluster y-coordinates into rows
if centers_y:
y_centers = np.array(centers_y).reshape(-1, 1)
y_clustering = DBSCAN(eps=y_tolerance, min_samples=2, metric='euclidean').fit(y_centers)
unique_labels = np.unique(y_clustering.labels_)
for label in unique_labels:
if label != -1: # Skip noise points
cluster_points = y_centers[y_clustering.labels_ == label]
rows.append(int(np.mean(cluster_points)))
# Cluster x-coordinates into columns
if centers_x:
x_centers = np.array(centers_x).reshape(-1, 1)
x_clustering = DBSCAN(eps=x_tolerance, min_samples=2, metric='euclidean').fit(x_centers)
unique_labels = np.unique(x_clustering.labels_)
for label in unique_labels:
if label != -1: # Skip noise points
cluster_points = x_centers[x_clustering.labels_ == label]
cols.append(int(np.mean(cluster_points)))
# Sort rows and columns
rows.sort()
cols.sort()
# Calculate total knots
total_knots = len(rows) * len(cols)
# Add padding for measurements
padding = 100
padded_img = np.full((height + 2*padding, width + 2*padding, 3), 255, dtype=np.uint8)
padded_img[padding:padding+height, padding:padding+width] = image
# Draw boxes if requested
if show_boxes:
for box in boxes:
x1, y1, x2, y2 = box['coords']
cv2.rectangle(padded_img,
(x1 + padding, y1 + padding),
(x2 + padding, y2 + padding),
(0, 255, 0), 2)
# Draw measurement lines and labels
cv2.line(padded_img, (padding, padding//2), (width+padding, padding//2), (0, 0, 0), 2)
cv2.putText(padded_img, f"{len(cols)} knots",
(padding + width//2 - 100, padding//2 - 10),
cv2.FONT_HERSHEY_DUPLEX, 0.7, (0, 0, 0), 2)
cv2.line(padded_img, (width+padding+padding//2, padding), (width+padding+padding//2, height+padding), (0, 0, 0), 2)
cv2.putText(padded_img, f"{len(rows)} knots",
(width+padding+padding//2 + 10, padding + height//2),
cv2.FONT_HERSHEY_DUPLEX, 0.7, (0, 0, 0), 2)
# Add total knot count and density
cv2.putText(padded_img, f"{int(total_knots)} Total Knots",
(padding + width//2 - 100, height + padding + padding//2),
cv2.FONT_HERSHEY_DUPLEX, 0.7, (0, 0, 0), 2)
# Calculate area in cm² (assuming 1 pixel = 0.0264 cm)
area_cm2 = (width * height * 0.0264 * 0.0264)
density = total_knots / area_cm2 if area_cm2 > 0 else 0
cv2.putText(padded_img, f"{density:.2f} knots/sqcm",
(padding + width//2 - 100, height + padding + padding//2 + 30),
cv2.FONT_HERSHEY_DUPLEX, 0.7, (0, 0, 0), 2)
# Prepare detection information
detection_info = f"Total Knots: {int(total_knots)}\n"
detection_info += f"Rows: {len(rows)}\n"
detection_info += f"Columns: {len(cols)}\n"
detection_info += f"Density: {int(total_knots)} knots/sqcm"
return padded_img, detection_info
# Create Gradio interface
with gr.Blocks(title="Rug Knot Detector") as demo:
gr.Markdown("# 🧶 Rug Knot Detector")
gr.Markdown("Upload an image of a rug to detect and analyze knots using our custom YOLO model.")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Upload Rug Image")
show_boxes = gr.Checkbox(label="Show Detection Boxes", value=True)
detect_btn = gr.Button("Detect Knots")
with gr.Column():
output_image = gr.Image(label="Detection Results")
output_text = gr.Textbox(label="Detection Information", lines=5)
detect_btn.click(
fn=process_image,
inputs=[input_image, show_boxes],
outputs=[output_image, output_text]
)
if __name__ == "__main__":
demo.launch(share=True)