Spaces:
Runtime error
Runtime error
Commit
Β·
cd47483
1
Parent(s):
0202688
add support for custom BASE_URL, MODEL, APIKEY
Browse files- README.md +7 -1
- app.py +5 -5
- pyproject.toml +12 -4
- src/distilabel_dataset_generator/__init__.py +0 -26
- src/distilabel_dataset_generator/apps/__init__.py +0 -0
- src/distilabel_dataset_generator/apps/base.py +1 -1
- src/distilabel_dataset_generator/apps/eval.py +5 -7
- src/distilabel_dataset_generator/apps/sft.py +169 -164
- src/distilabel_dataset_generator/apps/textcat.py +1 -3
- src/distilabel_dataset_generator/constants.py +55 -0
- src/distilabel_dataset_generator/pipelines/__init__.py +0 -0
- src/distilabel_dataset_generator/pipelines/base.py +2 -4
- src/distilabel_dataset_generator/pipelines/embeddings.py +1 -1
- src/distilabel_dataset_generator/pipelines/eval.py +15 -14
- src/distilabel_dataset_generator/pipelines/sft.py +15 -6
- src/distilabel_dataset_generator/pipelines/textcat.py +13 -14
- src/distilabel_dataset_generator/utils.py +1 -1
README.md
CHANGED
|
@@ -80,7 +80,13 @@ pip install synthetic-dataset-generator
|
|
| 80 |
|
| 81 |
### Environment Variables
|
| 82 |
|
| 83 |
-
- `HF_TOKEN`: Your Hugging Face token
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
Optionally, you can also push your datasets to Argilla for further curation by setting the following environment variables:
|
| 86 |
|
|
|
|
| 80 |
|
| 81 |
### Environment Variables
|
| 82 |
|
| 83 |
+
- `HF_TOKEN`: Your [Hugging Face token](https://huggingface.co/settings/tokens/new?ownUserPermissions=repo.content.read&ownUserPermissions=repo.write&globalPermissions=inference.serverless.write&tokenType=fineGrained) to push your datasets to the Hugging Face Hub and generate free completions from Hugging Face Inference Endpoints.
|
| 84 |
+
|
| 85 |
+
Optionally, you can set the following environment variables to customize the generation process.
|
| 86 |
+
|
| 87 |
+
- `BASE_URL`: The base URL for any OpenAI compatible API, e.g. `https://api-inference.huggingface.co/v1/`.
|
| 88 |
+
- `MODEL`: The model to use for generating the dataset, e.g. `meta-llama/Meta-Llama-3.1-8B-Instruct`.
|
| 89 |
+
- `API_KEY`: The API key to use for the corresponding API, e.g. `hf_...`.
|
| 90 |
|
| 91 |
Optionally, you can also push your datasets to Argilla for further curation by setting the following environment variables:
|
| 92 |
|
app.py
CHANGED
|
@@ -1,8 +1,8 @@
|
|
| 1 |
-
from
|
| 2 |
-
from
|
| 3 |
-
from
|
| 4 |
-
from
|
| 5 |
-
from
|
| 6 |
|
| 7 |
theme = "argilla/argilla-theme"
|
| 8 |
|
|
|
|
| 1 |
+
from distilabel_dataset_generator._tabbedinterface import TabbedInterface
|
| 2 |
+
from distilabel_dataset_generator.apps.eval import app as eval_app
|
| 3 |
+
from distilabel_dataset_generator.apps.faq import app as faq_app
|
| 4 |
+
from distilabel_dataset_generator.apps.sft import app as sft_app
|
| 5 |
+
from distilabel_dataset_generator.apps.textcat import app as textcat_app
|
| 6 |
|
| 7 |
theme = "argilla/argilla-theme"
|
| 8 |
|
pyproject.toml
CHANGED
|
@@ -5,6 +5,18 @@ description = "Build datasets using natural language"
|
|
| 5 |
authors = [
|
| 6 |
{name = "davidberenstein1957", email = "[email protected]"},
|
| 7 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
dependencies = [
|
| 9 |
"distilabel[hf-inference-endpoints,argilla,outlines,instructor]>=1.4.1",
|
| 10 |
"gradio[oauth]<5.0.0",
|
|
@@ -14,14 +26,10 @@ dependencies = [
|
|
| 14 |
"gradio-huggingfacehub-search>=0.0.7",
|
| 15 |
"argilla>=2.4.0",
|
| 16 |
]
|
| 17 |
-
requires-python = "<3.13,>=3.10"
|
| 18 |
-
readme = "README.md"
|
| 19 |
-
license = {text = "apache 2"}
|
| 20 |
|
| 21 |
[build-system]
|
| 22 |
requires = ["pdm-backend"]
|
| 23 |
build-backend = "pdm.backend"
|
| 24 |
|
| 25 |
-
|
| 26 |
[tool.pdm]
|
| 27 |
distribution = true
|
|
|
|
| 5 |
authors = [
|
| 6 |
{name = "davidberenstein1957", email = "[email protected]"},
|
| 7 |
]
|
| 8 |
+
tags = [
|
| 9 |
+
"gradio",
|
| 10 |
+
"synthetic-data",
|
| 11 |
+
"huggingface",
|
| 12 |
+
"argilla",
|
| 13 |
+
"generative-ai",
|
| 14 |
+
"ai",
|
| 15 |
+
]
|
| 16 |
+
requires-python = "<3.13,>=3.10"
|
| 17 |
+
readme = "README.md"
|
| 18 |
+
license = {text = "Apache 2"}
|
| 19 |
+
|
| 20 |
dependencies = [
|
| 21 |
"distilabel[hf-inference-endpoints,argilla,outlines,instructor]>=1.4.1",
|
| 22 |
"gradio[oauth]<5.0.0",
|
|
|
|
| 26 |
"gradio-huggingfacehub-search>=0.0.7",
|
| 27 |
"argilla>=2.4.0",
|
| 28 |
]
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
[build-system]
|
| 31 |
requires = ["pdm-backend"]
|
| 32 |
build-backend = "pdm.backend"
|
| 33 |
|
|
|
|
| 34 |
[tool.pdm]
|
| 35 |
distribution = true
|
src/distilabel_dataset_generator/__init__.py
CHANGED
|
@@ -1,8 +1,5 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import warnings
|
| 3 |
from typing import Optional
|
| 4 |
|
| 5 |
-
import argilla as rg
|
| 6 |
import distilabel
|
| 7 |
import distilabel.distiset
|
| 8 |
from distilabel.utils.card.dataset_card import (
|
|
@@ -11,29 +8,6 @@ from distilabel.utils.card.dataset_card import (
|
|
| 11 |
)
|
| 12 |
from huggingface_hub import DatasetCardData, HfApi
|
| 13 |
|
| 14 |
-
HF_TOKENS = [os.getenv("HF_TOKEN")] + [os.getenv(f"HF_TOKEN_{i}") for i in range(1, 10)]
|
| 15 |
-
HF_TOKENS = [token for token in HF_TOKENS if token]
|
| 16 |
-
|
| 17 |
-
if len(HF_TOKENS) == 0:
|
| 18 |
-
raise ValueError(
|
| 19 |
-
"HF_TOKEN is not set. Ensure you have set the HF_TOKEN environment variable that has access to the Hugging Face Hub repositories and Inference Endpoints."
|
| 20 |
-
)
|
| 21 |
-
|
| 22 |
-
ARGILLA_API_URL = os.getenv("ARGILLA_API_URL")
|
| 23 |
-
ARGILLA_API_KEY = os.getenv("ARGILLA_API_KEY")
|
| 24 |
-
if ARGILLA_API_URL is None or ARGILLA_API_KEY is None:
|
| 25 |
-
ARGILLA_API_URL = os.getenv("ARGILLA_API_URL_SDG_REVIEWER")
|
| 26 |
-
ARGILLA_API_KEY = os.getenv("ARGILLA_API_KEY_SDG_REVIEWER")
|
| 27 |
-
|
| 28 |
-
if ARGILLA_API_URL is None or ARGILLA_API_KEY is None:
|
| 29 |
-
warnings.warn("ARGILLA_API_URL or ARGILLA_API_KEY is not set")
|
| 30 |
-
argilla_client = None
|
| 31 |
-
else:
|
| 32 |
-
argilla_client = rg.Argilla(
|
| 33 |
-
api_url=ARGILLA_API_URL,
|
| 34 |
-
api_key=ARGILLA_API_KEY,
|
| 35 |
-
)
|
| 36 |
-
|
| 37 |
|
| 38 |
class CustomDistisetWithAdditionalTag(distilabel.distiset.Distiset):
|
| 39 |
def _generate_card(
|
|
|
|
|
|
|
|
|
|
| 1 |
from typing import Optional
|
| 2 |
|
|
|
|
| 3 |
import distilabel
|
| 4 |
import distilabel.distiset
|
| 5 |
from distilabel.utils.card.dataset_card import (
|
|
|
|
| 8 |
)
|
| 9 |
from huggingface_hub import DatasetCardData, HfApi
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
class CustomDistisetWithAdditionalTag(distilabel.distiset.Distiset):
|
| 13 |
def _generate_card(
|
src/distilabel_dataset_generator/apps/__init__.py
ADDED
|
File without changes
|
src/distilabel_dataset_generator/apps/base.py
CHANGED
|
@@ -10,7 +10,7 @@ from distilabel.distiset import Distiset
|
|
| 10 |
from gradio import OAuthToken
|
| 11 |
from huggingface_hub import HfApi, upload_file
|
| 12 |
|
| 13 |
-
from
|
| 14 |
_LOGGED_OUT_CSS,
|
| 15 |
get_argilla_client,
|
| 16 |
get_login_button,
|
|
|
|
| 10 |
from gradio import OAuthToken
|
| 11 |
from huggingface_hub import HfApi, upload_file
|
| 12 |
|
| 13 |
+
from distilabel_dataset_generator.utils import (
|
| 14 |
_LOGGED_OUT_CSS,
|
| 15 |
get_argilla_client,
|
| 16 |
get_login_button,
|
src/distilabel_dataset_generator/apps/eval.py
CHANGED
|
@@ -16,25 +16,23 @@ from distilabel.distiset import Distiset
|
|
| 16 |
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
| 17 |
from huggingface_hub import HfApi
|
| 18 |
|
| 19 |
-
from
|
| 20 |
hide_success_message,
|
| 21 |
show_success_message,
|
| 22 |
validate_argilla_user_workspace_dataset,
|
| 23 |
validate_push_to_hub,
|
| 24 |
)
|
| 25 |
-
from
|
| 26 |
-
|
| 27 |
-
)
|
| 28 |
-
from src.distilabel_dataset_generator.pipelines.embeddings import (
|
| 29 |
get_embeddings,
|
| 30 |
get_sentence_embedding_dimensions,
|
| 31 |
)
|
| 32 |
-
from
|
| 33 |
generate_pipeline_code,
|
| 34 |
get_custom_evaluator,
|
| 35 |
get_ultrafeedback_evaluator,
|
| 36 |
)
|
| 37 |
-
from
|
| 38 |
column_to_list,
|
| 39 |
extract_column_names,
|
| 40 |
get_argilla_client,
|
|
|
|
| 16 |
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
| 17 |
from huggingface_hub import HfApi
|
| 18 |
|
| 19 |
+
from distilabel_dataset_generator.apps.base import (
|
| 20 |
hide_success_message,
|
| 21 |
show_success_message,
|
| 22 |
validate_argilla_user_workspace_dataset,
|
| 23 |
validate_push_to_hub,
|
| 24 |
)
|
| 25 |
+
from distilabel_dataset_generator.constants import DEFAULT_BATCH_SIZE
|
| 26 |
+
from distilabel_dataset_generator.pipelines.embeddings import (
|
|
|
|
|
|
|
| 27 |
get_embeddings,
|
| 28 |
get_sentence_embedding_dimensions,
|
| 29 |
)
|
| 30 |
+
from distilabel_dataset_generator.pipelines.eval import (
|
| 31 |
generate_pipeline_code,
|
| 32 |
get_custom_evaluator,
|
| 33 |
get_ultrafeedback_evaluator,
|
| 34 |
)
|
| 35 |
+
from distilabel_dataset_generator.utils import (
|
| 36 |
column_to_list,
|
| 37 |
extract_column_names,
|
| 38 |
get_argilla_client,
|
src/distilabel_dataset_generator/apps/sft.py
CHANGED
|
@@ -9,27 +9,25 @@ from datasets import Dataset
|
|
| 9 |
from distilabel.distiset import Distiset
|
| 10 |
from huggingface_hub import HfApi
|
| 11 |
|
| 12 |
-
from
|
| 13 |
hide_success_message,
|
| 14 |
show_success_message,
|
| 15 |
validate_argilla_user_workspace_dataset,
|
| 16 |
validate_push_to_hub,
|
| 17 |
)
|
| 18 |
-
from
|
| 19 |
-
|
| 20 |
-
)
|
| 21 |
-
from src.distilabel_dataset_generator.pipelines.embeddings import (
|
| 22 |
get_embeddings,
|
| 23 |
get_sentence_embedding_dimensions,
|
| 24 |
)
|
| 25 |
-
from
|
| 26 |
DEFAULT_DATASET_DESCRIPTIONS,
|
| 27 |
generate_pipeline_code,
|
| 28 |
get_magpie_generator,
|
| 29 |
get_prompt_generator,
|
| 30 |
get_response_generator,
|
| 31 |
)
|
| 32 |
-
from
|
| 33 |
_LOGGED_OUT_CSS,
|
| 34 |
get_argilla_client,
|
| 35 |
get_org_dropdown,
|
|
@@ -354,168 +352,175 @@ def hide_pipeline_code_visibility():
|
|
| 354 |
|
| 355 |
with gr.Blocks(css=_LOGGED_OUT_CSS) as app:
|
| 356 |
with gr.Column() as main_ui:
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
with gr.
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 370 |
interactive=True,
|
| 371 |
-
|
| 372 |
)
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
variant="primary",
|
| 376 |
-
)
|
| 377 |
-
with gr.Column(scale=2):
|
| 378 |
-
examples = gr.Examples(
|
| 379 |
-
examples=DEFAULT_DATASET_DESCRIPTIONS,
|
| 380 |
-
inputs=[dataset_description],
|
| 381 |
-
cache_examples=False,
|
| 382 |
-
label="Examples",
|
| 383 |
-
)
|
| 384 |
-
with gr.Column(scale=1):
|
| 385 |
-
pass
|
| 386 |
-
|
| 387 |
-
gr.HTML(value="<hr>")
|
| 388 |
-
gr.Markdown(value="## 2. Configure your dataset")
|
| 389 |
-
with gr.Row(equal_height=False):
|
| 390 |
-
with gr.Column(scale=2):
|
| 391 |
-
system_prompt = gr.Textbox(
|
| 392 |
-
label="System prompt",
|
| 393 |
-
placeholder="You are a helpful assistant.",
|
| 394 |
-
)
|
| 395 |
-
num_turns = gr.Number(
|
| 396 |
-
value=1,
|
| 397 |
-
label="Number of turns in the conversation",
|
| 398 |
-
minimum=1,
|
| 399 |
-
maximum=4,
|
| 400 |
-
step=1,
|
| 401 |
-
interactive=True,
|
| 402 |
-
info="Choose between 1 (single turn with 'instruction-response' columns) and 2-4 (multi-turn conversation with a 'messages' column).",
|
| 403 |
-
)
|
| 404 |
-
btn_apply_to_sample_dataset = gr.Button(
|
| 405 |
-
"Refresh dataset", variant="secondary"
|
| 406 |
-
)
|
| 407 |
-
with gr.Column(scale=3):
|
| 408 |
-
dataframe = gr.Dataframe(
|
| 409 |
-
headers=["prompt", "completion"],
|
| 410 |
-
wrap=True,
|
| 411 |
-
height=500,
|
| 412 |
-
interactive=False,
|
| 413 |
-
)
|
| 414 |
-
|
| 415 |
-
gr.HTML(value="<hr>")
|
| 416 |
-
gr.Markdown(value="## 3. Generate your dataset")
|
| 417 |
-
with gr.Row(equal_height=False):
|
| 418 |
-
with gr.Column(scale=2):
|
| 419 |
-
org_name = get_org_dropdown()
|
| 420 |
-
repo_name = gr.Textbox(
|
| 421 |
-
label="Repo name",
|
| 422 |
-
placeholder="dataset_name",
|
| 423 |
-
value=f"my-distiset-{str(uuid.uuid4())[:8]}",
|
| 424 |
-
interactive=True,
|
| 425 |
-
)
|
| 426 |
-
num_rows = gr.Number(
|
| 427 |
-
label="Number of rows",
|
| 428 |
-
value=10,
|
| 429 |
-
interactive=True,
|
| 430 |
-
scale=1,
|
| 431 |
-
)
|
| 432 |
-
private = gr.Checkbox(
|
| 433 |
-
label="Private dataset",
|
| 434 |
-
value=False,
|
| 435 |
-
interactive=True,
|
| 436 |
-
scale=1,
|
| 437 |
-
)
|
| 438 |
-
btn_push_to_hub = gr.Button("Push to Hub", variant="primary", scale=2)
|
| 439 |
-
with gr.Column(scale=3):
|
| 440 |
-
success_message = gr.Markdown(visible=True)
|
| 441 |
-
with gr.Accordion(
|
| 442 |
-
"Do you want to go further? Customize and run with Distilabel",
|
| 443 |
-
open=False,
|
| 444 |
-
visible=False,
|
| 445 |
-
) as pipeline_code_ui:
|
| 446 |
-
code = generate_pipeline_code(
|
| 447 |
-
system_prompt=system_prompt.value,
|
| 448 |
-
num_turns=num_turns.value,
|
| 449 |
-
num_rows=num_rows.value,
|
| 450 |
)
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
|
|
|
|
|
|
|
| 455 |
)
|
| 456 |
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 468 |
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
|
| 475 |
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
|
| 510 |
-
|
| 511 |
-
|
| 512 |
-
|
| 513 |
-
|
| 514 |
-
|
| 515 |
-
|
| 516 |
-
|
| 517 |
-
|
| 518 |
-
|
| 519 |
|
| 520 |
-
|
| 521 |
-
|
|
|
|
| 9 |
from distilabel.distiset import Distiset
|
| 10 |
from huggingface_hub import HfApi
|
| 11 |
|
| 12 |
+
from distilabel_dataset_generator.apps.base import (
|
| 13 |
hide_success_message,
|
| 14 |
show_success_message,
|
| 15 |
validate_argilla_user_workspace_dataset,
|
| 16 |
validate_push_to_hub,
|
| 17 |
)
|
| 18 |
+
from distilabel_dataset_generator.constants import DEFAULT_BATCH_SIZE, SFT_AVAILABLE
|
| 19 |
+
from distilabel_dataset_generator.pipelines.embeddings import (
|
|
|
|
|
|
|
| 20 |
get_embeddings,
|
| 21 |
get_sentence_embedding_dimensions,
|
| 22 |
)
|
| 23 |
+
from distilabel_dataset_generator.pipelines.sft import (
|
| 24 |
DEFAULT_DATASET_DESCRIPTIONS,
|
| 25 |
generate_pipeline_code,
|
| 26 |
get_magpie_generator,
|
| 27 |
get_prompt_generator,
|
| 28 |
get_response_generator,
|
| 29 |
)
|
| 30 |
+
from distilabel_dataset_generator.utils import (
|
| 31 |
_LOGGED_OUT_CSS,
|
| 32 |
get_argilla_client,
|
| 33 |
get_org_dropdown,
|
|
|
|
| 352 |
|
| 353 |
with gr.Blocks(css=_LOGGED_OUT_CSS) as app:
|
| 354 |
with gr.Column() as main_ui:
|
| 355 |
+
if not SFT_AVAILABLE:
|
| 356 |
+
gr.Markdown(
|
| 357 |
+
value=f"## Supervised Fine-Tuning is not available for the {MODEL} model. Use Hugging Face Llama3 or Qwen2 models."
|
| 358 |
+
)
|
| 359 |
+
else:
|
| 360 |
+
gr.Markdown(value="## 1. Describe the dataset you want")
|
| 361 |
+
with gr.Row():
|
| 362 |
+
with gr.Column(scale=2):
|
| 363 |
+
dataset_description = gr.Textbox(
|
| 364 |
+
label="Dataset description",
|
| 365 |
+
placeholder="Give a precise description of your desired dataset.",
|
| 366 |
+
)
|
| 367 |
+
with gr.Accordion("Temperature", open=False):
|
| 368 |
+
temperature = gr.Slider(
|
| 369 |
+
minimum=0.1,
|
| 370 |
+
maximum=1,
|
| 371 |
+
value=0.8,
|
| 372 |
+
step=0.1,
|
| 373 |
+
interactive=True,
|
| 374 |
+
show_label=False,
|
| 375 |
+
)
|
| 376 |
+
load_btn = gr.Button(
|
| 377 |
+
"Create dataset",
|
| 378 |
+
variant="primary",
|
| 379 |
+
)
|
| 380 |
+
with gr.Column(scale=2):
|
| 381 |
+
examples = gr.Examples(
|
| 382 |
+
examples=DEFAULT_DATASET_DESCRIPTIONS,
|
| 383 |
+
inputs=[dataset_description],
|
| 384 |
+
cache_examples=False,
|
| 385 |
+
label="Examples",
|
| 386 |
+
)
|
| 387 |
+
with gr.Column(scale=1):
|
| 388 |
+
pass
|
| 389 |
+
|
| 390 |
+
gr.HTML(value="<hr>")
|
| 391 |
+
gr.Markdown(value="## 2. Configure your dataset")
|
| 392 |
+
with gr.Row(equal_height=False):
|
| 393 |
+
with gr.Column(scale=2):
|
| 394 |
+
system_prompt = gr.Textbox(
|
| 395 |
+
label="System prompt",
|
| 396 |
+
placeholder="You are a helpful assistant.",
|
| 397 |
+
)
|
| 398 |
+
num_turns = gr.Number(
|
| 399 |
+
value=1,
|
| 400 |
+
label="Number of turns in the conversation",
|
| 401 |
+
minimum=1,
|
| 402 |
+
maximum=4,
|
| 403 |
+
step=1,
|
| 404 |
interactive=True,
|
| 405 |
+
info="Choose between 1 (single turn with 'instruction-response' columns) and 2-4 (multi-turn conversation with a 'messages' column).",
|
| 406 |
)
|
| 407 |
+
btn_apply_to_sample_dataset = gr.Button(
|
| 408 |
+
"Refresh dataset", variant="secondary"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 409 |
)
|
| 410 |
+
with gr.Column(scale=3):
|
| 411 |
+
dataframe = gr.Dataframe(
|
| 412 |
+
headers=["prompt", "completion"],
|
| 413 |
+
wrap=True,
|
| 414 |
+
height=500,
|
| 415 |
+
interactive=False,
|
| 416 |
)
|
| 417 |
|
| 418 |
+
gr.HTML(value="<hr>")
|
| 419 |
+
gr.Markdown(value="## 3. Generate your dataset")
|
| 420 |
+
with gr.Row(equal_height=False):
|
| 421 |
+
with gr.Column(scale=2):
|
| 422 |
+
org_name = get_org_dropdown()
|
| 423 |
+
repo_name = gr.Textbox(
|
| 424 |
+
label="Repo name",
|
| 425 |
+
placeholder="dataset_name",
|
| 426 |
+
value=f"my-distiset-{str(uuid.uuid4())[:8]}",
|
| 427 |
+
interactive=True,
|
| 428 |
+
)
|
| 429 |
+
num_rows = gr.Number(
|
| 430 |
+
label="Number of rows",
|
| 431 |
+
value=10,
|
| 432 |
+
interactive=True,
|
| 433 |
+
scale=1,
|
| 434 |
+
)
|
| 435 |
+
private = gr.Checkbox(
|
| 436 |
+
label="Private dataset",
|
| 437 |
+
value=False,
|
| 438 |
+
interactive=True,
|
| 439 |
+
scale=1,
|
| 440 |
+
)
|
| 441 |
+
btn_push_to_hub = gr.Button(
|
| 442 |
+
"Push to Hub", variant="primary", scale=2
|
| 443 |
+
)
|
| 444 |
+
with gr.Column(scale=3):
|
| 445 |
+
success_message = gr.Markdown(visible=True)
|
| 446 |
+
with gr.Accordion(
|
| 447 |
+
"Do you want to go further? Customize and run with Distilabel",
|
| 448 |
+
open=False,
|
| 449 |
+
visible=False,
|
| 450 |
+
) as pipeline_code_ui:
|
| 451 |
+
code = generate_pipeline_code(
|
| 452 |
+
system_prompt=system_prompt.value,
|
| 453 |
+
num_turns=num_turns.value,
|
| 454 |
+
num_rows=num_rows.value,
|
| 455 |
+
)
|
| 456 |
+
pipeline_code = gr.Code(
|
| 457 |
+
value=code,
|
| 458 |
+
language="python",
|
| 459 |
+
label="Distilabel Pipeline Code",
|
| 460 |
+
)
|
| 461 |
+
|
| 462 |
+
load_btn.click(
|
| 463 |
+
fn=generate_system_prompt,
|
| 464 |
+
inputs=[dataset_description, temperature],
|
| 465 |
+
outputs=[system_prompt],
|
| 466 |
+
show_progress=True,
|
| 467 |
+
).then(
|
| 468 |
+
fn=generate_sample_dataset,
|
| 469 |
+
inputs=[system_prompt, num_turns],
|
| 470 |
+
outputs=[dataframe],
|
| 471 |
+
show_progress=True,
|
| 472 |
+
)
|
| 473 |
|
| 474 |
+
btn_apply_to_sample_dataset.click(
|
| 475 |
+
fn=generate_sample_dataset,
|
| 476 |
+
inputs=[system_prompt, num_turns],
|
| 477 |
+
outputs=[dataframe],
|
| 478 |
+
show_progress=True,
|
| 479 |
+
)
|
| 480 |
|
| 481 |
+
btn_push_to_hub.click(
|
| 482 |
+
fn=validate_argilla_user_workspace_dataset,
|
| 483 |
+
inputs=[repo_name],
|
| 484 |
+
outputs=[success_message],
|
| 485 |
+
show_progress=True,
|
| 486 |
+
).then(
|
| 487 |
+
fn=validate_push_to_hub,
|
| 488 |
+
inputs=[org_name, repo_name],
|
| 489 |
+
outputs=[success_message],
|
| 490 |
+
show_progress=True,
|
| 491 |
+
).success(
|
| 492 |
+
fn=hide_success_message,
|
| 493 |
+
outputs=[success_message],
|
| 494 |
+
show_progress=True,
|
| 495 |
+
).success(
|
| 496 |
+
fn=hide_pipeline_code_visibility,
|
| 497 |
+
inputs=[],
|
| 498 |
+
outputs=[pipeline_code_ui],
|
| 499 |
+
).success(
|
| 500 |
+
fn=push_dataset,
|
| 501 |
+
inputs=[
|
| 502 |
+
org_name,
|
| 503 |
+
repo_name,
|
| 504 |
+
system_prompt,
|
| 505 |
+
num_turns,
|
| 506 |
+
num_rows,
|
| 507 |
+
private,
|
| 508 |
+
],
|
| 509 |
+
outputs=[success_message],
|
| 510 |
+
show_progress=True,
|
| 511 |
+
).success(
|
| 512 |
+
fn=show_success_message,
|
| 513 |
+
inputs=[org_name, repo_name],
|
| 514 |
+
outputs=[success_message],
|
| 515 |
+
).success(
|
| 516 |
+
fn=generate_pipeline_code,
|
| 517 |
+
inputs=[system_prompt, num_turns, num_rows],
|
| 518 |
+
outputs=[pipeline_code],
|
| 519 |
+
).success(
|
| 520 |
+
fn=show_pipeline_code_visibility,
|
| 521 |
+
inputs=[],
|
| 522 |
+
outputs=[pipeline_code_ui],
|
| 523 |
+
)
|
| 524 |
|
| 525 |
+
app.load(fn=swap_visibility, outputs=main_ui)
|
| 526 |
+
app.load(fn=get_org_dropdown, outputs=[org_name])
|
src/distilabel_dataset_generator/apps/textcat.py
CHANGED
|
@@ -9,15 +9,13 @@ from datasets import ClassLabel, Dataset, Features, Sequence, Value
|
|
| 9 |
from distilabel.distiset import Distiset
|
| 10 |
from huggingface_hub import HfApi
|
| 11 |
|
|
|
|
| 12 |
from src.distilabel_dataset_generator.apps.base import (
|
| 13 |
hide_success_message,
|
| 14 |
show_success_message,
|
| 15 |
validate_argilla_user_workspace_dataset,
|
| 16 |
validate_push_to_hub,
|
| 17 |
)
|
| 18 |
-
from src.distilabel_dataset_generator.pipelines.base import (
|
| 19 |
-
DEFAULT_BATCH_SIZE,
|
| 20 |
-
)
|
| 21 |
from src.distilabel_dataset_generator.pipelines.embeddings import (
|
| 22 |
get_embeddings,
|
| 23 |
get_sentence_embedding_dimensions,
|
|
|
|
| 9 |
from distilabel.distiset import Distiset
|
| 10 |
from huggingface_hub import HfApi
|
| 11 |
|
| 12 |
+
from distilabel_dataset_generator.constants import DEFAULT_BATCH_SIZE
|
| 13 |
from src.distilabel_dataset_generator.apps.base import (
|
| 14 |
hide_success_message,
|
| 15 |
show_success_message,
|
| 16 |
validate_argilla_user_workspace_dataset,
|
| 17 |
validate_push_to_hub,
|
| 18 |
)
|
|
|
|
|
|
|
|
|
|
| 19 |
from src.distilabel_dataset_generator.pipelines.embeddings import (
|
| 20 |
get_embeddings,
|
| 21 |
get_sentence_embedding_dimensions,
|
src/distilabel_dataset_generator/constants.py
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import warnings
|
| 3 |
+
|
| 4 |
+
import argilla as rg
|
| 5 |
+
|
| 6 |
+
# Hugging Face
|
| 7 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 8 |
+
if HF_TOKEN is None:
|
| 9 |
+
raise ValueError(
|
| 10 |
+
"HF_TOKEN is not set. Ensure you have set the HF_TOKEN environment variable that has access to the Hugging Face Hub repositories and Inference Endpoints."
|
| 11 |
+
)
|
| 12 |
+
|
| 13 |
+
# Inference
|
| 14 |
+
DEFAULT_BATCH_SIZE = 5
|
| 15 |
+
MODEL = os.getenv("MODEL", "meta-llama/Meta-Llama-3.1-8B-Instruct")
|
| 16 |
+
API_KEYS = (
|
| 17 |
+
[os.getenv("HF_TOKEN")]
|
| 18 |
+
+ [os.getenv(f"HF_TOKEN_{i}") for i in range(1, 10)]
|
| 19 |
+
+ [os.getenv("API_KEY")]
|
| 20 |
+
)
|
| 21 |
+
API_KEYS = [token for token in API_KEYS if token]
|
| 22 |
+
BASE_URL = os.getenv("BASE_URL", "https://api-inference.huggingface.co/v1/")
|
| 23 |
+
|
| 24 |
+
if BASE_URL != "https://api-inference.huggingface.co/v1/" and len(API_KEYS) == 0:
|
| 25 |
+
raise ValueError(
|
| 26 |
+
"API_KEY is not set. Ensure you have set the API_KEY environment variable that has access to the Hugging Face Inference Endpoints."
|
| 27 |
+
)
|
| 28 |
+
if "Qwen2" not in MODEL and "Llama-3" not in MODEL:
|
| 29 |
+
SFT_AVAILABLE = False
|
| 30 |
+
warnings.warn(
|
| 31 |
+
"SFT_AVAILABLE is set to False because the model is not a Qwen or Llama model."
|
| 32 |
+
)
|
| 33 |
+
MAGPIE_PRE_QUERY_TEMPLATE = None
|
| 34 |
+
else:
|
| 35 |
+
SFT_AVAILABLE = True
|
| 36 |
+
if "Qwen2" in MODEL:
|
| 37 |
+
MAGPIE_PRE_QUERY_TEMPLATE = "qwen2"
|
| 38 |
+
else:
|
| 39 |
+
MAGPIE_PRE_QUERY_TEMPLATE = "llama3"
|
| 40 |
+
|
| 41 |
+
# Argilla
|
| 42 |
+
ARGILLA_API_URL = os.getenv("ARGILLA_API_URL")
|
| 43 |
+
ARGILLA_API_KEY = os.getenv("ARGILLA_API_KEY")
|
| 44 |
+
if ARGILLA_API_URL is None or ARGILLA_API_KEY is None:
|
| 45 |
+
ARGILLA_API_URL = os.getenv("ARGILLA_API_URL_SDG_REVIEWER")
|
| 46 |
+
ARGILLA_API_KEY = os.getenv("ARGILLA_API_KEY_SDG_REVIEWER")
|
| 47 |
+
|
| 48 |
+
if ARGILLA_API_URL is None or ARGILLA_API_KEY is None:
|
| 49 |
+
warnings.warn("ARGILLA_API_URL or ARGILLA_API_KEY is not set")
|
| 50 |
+
argilla_client = None
|
| 51 |
+
else:
|
| 52 |
+
argilla_client = rg.Argilla(
|
| 53 |
+
api_url=ARGILLA_API_URL,
|
| 54 |
+
api_key=ARGILLA_API_KEY,
|
| 55 |
+
)
|
src/distilabel_dataset_generator/pipelines/__init__.py
ADDED
|
File without changes
|
src/distilabel_dataset_generator/pipelines/base.py
CHANGED
|
@@ -1,12 +1,10 @@
|
|
| 1 |
-
from
|
| 2 |
|
| 3 |
-
DEFAULT_BATCH_SIZE = 5
|
| 4 |
TOKEN_INDEX = 0
|
| 5 |
-
MODEL = "meta-llama/Meta-Llama-3.1-8B-Instruct"
|
| 6 |
|
| 7 |
|
| 8 |
def _get_next_api_key():
|
| 9 |
global TOKEN_INDEX
|
| 10 |
-
api_key =
|
| 11 |
TOKEN_INDEX += 1
|
| 12 |
return api_key
|
|
|
|
| 1 |
+
from distilabel_dataset_generator.constants import API_KEYS
|
| 2 |
|
|
|
|
| 3 |
TOKEN_INDEX = 0
|
|
|
|
| 4 |
|
| 5 |
|
| 6 |
def _get_next_api_key():
|
| 7 |
global TOKEN_INDEX
|
| 8 |
+
api_key = API_KEYS[TOKEN_INDEX % len(API_KEYS)]
|
| 9 |
TOKEN_INDEX += 1
|
| 10 |
return api_key
|
src/distilabel_dataset_generator/pipelines/embeddings.py
CHANGED
|
@@ -4,7 +4,7 @@ from sentence_transformers import SentenceTransformer
|
|
| 4 |
from sentence_transformers.models import StaticEmbedding
|
| 5 |
|
| 6 |
# Initialize a StaticEmbedding module
|
| 7 |
-
static_embedding = StaticEmbedding.from_model2vec("minishlab/
|
| 8 |
model = SentenceTransformer(modules=[static_embedding])
|
| 9 |
|
| 10 |
|
|
|
|
| 4 |
from sentence_transformers.models import StaticEmbedding
|
| 5 |
|
| 6 |
# Initialize a StaticEmbedding module
|
| 7 |
+
static_embedding = StaticEmbedding.from_model2vec("minishlab/potion-base-8M")
|
| 8 |
model = SentenceTransformer(modules=[static_embedding])
|
| 9 |
|
| 10 |
|
src/distilabel_dataset_generator/pipelines/eval.py
CHANGED
|
@@ -5,18 +5,16 @@ from distilabel.steps.tasks import (
|
|
| 5 |
UltraFeedback,
|
| 6 |
)
|
| 7 |
|
| 8 |
-
from
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
)
|
| 12 |
-
from src.distilabel_dataset_generator.utils import extract_column_names
|
| 13 |
|
| 14 |
|
| 15 |
def get_ultrafeedback_evaluator(aspect, is_sample):
|
| 16 |
ultrafeedback_evaluator = UltraFeedback(
|
| 17 |
llm=InferenceEndpointsLLM(
|
| 18 |
model_id=MODEL,
|
| 19 |
-
|
| 20 |
api_key=_get_next_api_key(),
|
| 21 |
generation_kwargs={
|
| 22 |
"temperature": 0,
|
|
@@ -33,7 +31,7 @@ def get_custom_evaluator(prompt_template, structured_output, columns, is_sample)
|
|
| 33 |
custom_evaluator = TextGeneration(
|
| 34 |
llm=InferenceEndpointsLLM(
|
| 35 |
model_id=MODEL,
|
| 36 |
-
|
| 37 |
api_key=_get_next_api_key(),
|
| 38 |
structured_output={"format": "json", "schema": structured_output},
|
| 39 |
generation_kwargs={
|
|
@@ -62,7 +60,8 @@ from distilabel.steps.tasks import UltraFeedback
|
|
| 62 |
from distilabel.llms import InferenceEndpointsLLM
|
| 63 |
|
| 64 |
MODEL = "{MODEL}"
|
| 65 |
-
|
|
|
|
| 66 |
|
| 67 |
hf_ds = load_dataset("{repo_id}", "{subset}", split="{split}[:{num_rows}]")
|
| 68 |
data = preprocess_data(hf_ds, "{instruction_column}", "{response_columns}") # to get a list of dictionaries
|
|
@@ -76,8 +75,8 @@ with Pipeline(name="ultrafeedback") as pipeline:
|
|
| 76 |
ultrafeedback_evaluator = UltraFeedback(
|
| 77 |
llm=InferenceEndpointsLLM(
|
| 78 |
model_id=MODEL,
|
| 79 |
-
|
| 80 |
-
api_key=os.environ["
|
| 81 |
generation_kwargs={{
|
| 82 |
"temperature": 0,
|
| 83 |
"max_new_tokens": 2048,
|
|
@@ -101,7 +100,8 @@ from distilabel.steps.tasks import UltraFeedback
|
|
| 101 |
from distilabel.llms import InferenceEndpointsLLM
|
| 102 |
|
| 103 |
MODEL = "{MODEL}"
|
| 104 |
-
|
|
|
|
| 105 |
|
| 106 |
hf_ds = load_dataset("{repo_id}", "{subset}", split="{split}")
|
| 107 |
data = preprocess_data(hf_ds, "{instruction_column}", "{response_columns}") # to get a list of dictionaries
|
|
@@ -119,8 +119,8 @@ with Pipeline(name="ultrafeedback") as pipeline:
|
|
| 119 |
aspect=aspect,
|
| 120 |
llm=InferenceEndpointsLLM(
|
| 121 |
model_id=MODEL,
|
| 122 |
-
|
| 123 |
-
api_key=os.environ["
|
| 124 |
generation_kwargs={{
|
| 125 |
"temperature": 0,
|
| 126 |
"max_new_tokens": 2048,
|
|
@@ -157,6 +157,7 @@ from distilabel.steps.tasks import TextGeneration
|
|
| 157 |
from distilabel.llms import InferenceEndpointsLLM
|
| 158 |
|
| 159 |
MODEL = "{MODEL}"
|
|
|
|
| 160 |
CUSTOM_TEMPLATE = "{prompt_template}"
|
| 161 |
os.environ["HF_TOKEN"] = "hf_xxx" # https://huggingface.co/settings/tokens/new?ownUserPermissions=repo.content.read&ownUserPermissions=repo.write&globalPermissions=inference.serverless.write&canReadGatedRepos=true&tokenType=fineGrained
|
| 162 |
|
|
@@ -171,7 +172,7 @@ with Pipeline(name="custom-evaluation") as pipeline:
|
|
| 171 |
custom_evaluator = TextGeneration(
|
| 172 |
llm=InferenceEndpointsLLM(
|
| 173 |
model_id=MODEL,
|
| 174 |
-
|
| 175 |
api_key=os.environ["HF_TOKEN"],
|
| 176 |
structured_output={{"format": "json", "schema": {structured_output}}},
|
| 177 |
generation_kwargs={{
|
|
|
|
| 5 |
UltraFeedback,
|
| 6 |
)
|
| 7 |
|
| 8 |
+
from distilabel_dataset_generator.constants import BASE_URL, MODEL
|
| 9 |
+
from distilabel_dataset_generator.pipelines.base import _get_next_api_key
|
| 10 |
+
from distilabel_dataset_generator.utils import extract_column_names
|
|
|
|
|
|
|
| 11 |
|
| 12 |
|
| 13 |
def get_ultrafeedback_evaluator(aspect, is_sample):
|
| 14 |
ultrafeedback_evaluator = UltraFeedback(
|
| 15 |
llm=InferenceEndpointsLLM(
|
| 16 |
model_id=MODEL,
|
| 17 |
+
base_url=BASE_URL,
|
| 18 |
api_key=_get_next_api_key(),
|
| 19 |
generation_kwargs={
|
| 20 |
"temperature": 0,
|
|
|
|
| 31 |
custom_evaluator = TextGeneration(
|
| 32 |
llm=InferenceEndpointsLLM(
|
| 33 |
model_id=MODEL,
|
| 34 |
+
base_url=BASE_URL,
|
| 35 |
api_key=_get_next_api_key(),
|
| 36 |
structured_output={"format": "json", "schema": structured_output},
|
| 37 |
generation_kwargs={
|
|
|
|
| 60 |
from distilabel.llms import InferenceEndpointsLLM
|
| 61 |
|
| 62 |
MODEL = "{MODEL}"
|
| 63 |
+
BASE_URL = "{BASE_URL}"
|
| 64 |
+
os.environ["API_KEY"] = "hf_xxx" # https://huggingface.co/settings/tokens/new?ownUserPermissions=repo.content.read&ownUserPermissions=repo.write&globalPermissions=inference.serverless.write&canReadGatedRepos=true&tokenType=fineGrained
|
| 65 |
|
| 66 |
hf_ds = load_dataset("{repo_id}", "{subset}", split="{split}[:{num_rows}]")
|
| 67 |
data = preprocess_data(hf_ds, "{instruction_column}", "{response_columns}") # to get a list of dictionaries
|
|
|
|
| 75 |
ultrafeedback_evaluator = UltraFeedback(
|
| 76 |
llm=InferenceEndpointsLLM(
|
| 77 |
model_id=MODEL,
|
| 78 |
+
base_url=BASE_URL,
|
| 79 |
+
api_key=os.environ["API_KEY"],
|
| 80 |
generation_kwargs={{
|
| 81 |
"temperature": 0,
|
| 82 |
"max_new_tokens": 2048,
|
|
|
|
| 100 |
from distilabel.llms import InferenceEndpointsLLM
|
| 101 |
|
| 102 |
MODEL = "{MODEL}"
|
| 103 |
+
BASE_URL = "{BASE_URL}"
|
| 104 |
+
os.environ["BASE_URL"] = "hf_xxx" # https://huggingface.co/settings/tokens/new?ownUserPermissions=repo.content.read&ownUserPermissions=repo.write&globalPermissions=inference.serverless.write&canReadGatedRepos=true&tokenType=fineGrained
|
| 105 |
|
| 106 |
hf_ds = load_dataset("{repo_id}", "{subset}", split="{split}")
|
| 107 |
data = preprocess_data(hf_ds, "{instruction_column}", "{response_columns}") # to get a list of dictionaries
|
|
|
|
| 119 |
aspect=aspect,
|
| 120 |
llm=InferenceEndpointsLLM(
|
| 121 |
model_id=MODEL,
|
| 122 |
+
base_url=BASE_URL,
|
| 123 |
+
api_key=os.environ["BASE_URL"],
|
| 124 |
generation_kwargs={{
|
| 125 |
"temperature": 0,
|
| 126 |
"max_new_tokens": 2048,
|
|
|
|
| 157 |
from distilabel.llms import InferenceEndpointsLLM
|
| 158 |
|
| 159 |
MODEL = "{MODEL}"
|
| 160 |
+
BASE_URL = "{BASE_URL}"
|
| 161 |
CUSTOM_TEMPLATE = "{prompt_template}"
|
| 162 |
os.environ["HF_TOKEN"] = "hf_xxx" # https://huggingface.co/settings/tokens/new?ownUserPermissions=repo.content.read&ownUserPermissions=repo.write&globalPermissions=inference.serverless.write&canReadGatedRepos=true&tokenType=fineGrained
|
| 163 |
|
|
|
|
| 172 |
custom_evaluator = TextGeneration(
|
| 173 |
llm=InferenceEndpointsLLM(
|
| 174 |
model_id=MODEL,
|
| 175 |
+
base_url=BASE_URL,
|
| 176 |
api_key=os.environ["HF_TOKEN"],
|
| 177 |
structured_output={{"format": "json", "schema": {structured_output}}},
|
| 178 |
generation_kwargs={{
|
src/distilabel_dataset_generator/pipelines/sft.py
CHANGED
|
@@ -1,10 +1,12 @@
|
|
| 1 |
from distilabel.llms import InferenceEndpointsLLM
|
| 2 |
from distilabel.steps.tasks import ChatGeneration, Magpie, TextGeneration
|
| 3 |
|
| 4 |
-
from
|
|
|
|
|
|
|
| 5 |
MODEL,
|
| 6 |
-
_get_next_api_key,
|
| 7 |
)
|
|
|
|
| 8 |
|
| 9 |
INFORMATION_SEEKING_PROMPT = (
|
| 10 |
"You are an AI assistant designed to provide accurate and concise information on a wide"
|
|
@@ -144,6 +146,7 @@ def get_prompt_generator(temperature):
|
|
| 144 |
api_key=_get_next_api_key(),
|
| 145 |
model_id=MODEL,
|
| 146 |
tokenizer_id=MODEL,
|
|
|
|
| 147 |
generation_kwargs={
|
| 148 |
"temperature": temperature,
|
| 149 |
"max_new_tokens": 2048,
|
|
@@ -165,8 +168,9 @@ def get_magpie_generator(system_prompt, num_turns, is_sample):
|
|
| 165 |
llm=InferenceEndpointsLLM(
|
| 166 |
model_id=MODEL,
|
| 167 |
tokenizer_id=MODEL,
|
|
|
|
| 168 |
api_key=_get_next_api_key(),
|
| 169 |
-
magpie_pre_query_template=
|
| 170 |
generation_kwargs={
|
| 171 |
"temperature": 0.9,
|
| 172 |
"do_sample": True,
|
|
@@ -184,8 +188,9 @@ def get_magpie_generator(system_prompt, num_turns, is_sample):
|
|
| 184 |
llm=InferenceEndpointsLLM(
|
| 185 |
model_id=MODEL,
|
| 186 |
tokenizer_id=MODEL,
|
|
|
|
| 187 |
api_key=_get_next_api_key(),
|
| 188 |
-
magpie_pre_query_template=
|
| 189 |
generation_kwargs={
|
| 190 |
"temperature": 0.9,
|
| 191 |
"do_sample": True,
|
|
@@ -208,6 +213,7 @@ def get_response_generator(system_prompt, num_turns, is_sample):
|
|
| 208 |
llm=InferenceEndpointsLLM(
|
| 209 |
model_id=MODEL,
|
| 210 |
tokenizer_id=MODEL,
|
|
|
|
| 211 |
api_key=_get_next_api_key(),
|
| 212 |
generation_kwargs={
|
| 213 |
"temperature": 0.8,
|
|
@@ -223,6 +229,7 @@ def get_response_generator(system_prompt, num_turns, is_sample):
|
|
| 223 |
llm=InferenceEndpointsLLM(
|
| 224 |
model_id=MODEL,
|
| 225 |
tokenizer_id=MODEL,
|
|
|
|
| 226 |
api_key=_get_next_api_key(),
|
| 227 |
generation_kwargs={
|
| 228 |
"temperature": 0.8,
|
|
@@ -247,14 +254,16 @@ from distilabel.steps.tasks import MagpieGenerator
|
|
| 247 |
from distilabel.llms import InferenceEndpointsLLM
|
| 248 |
|
| 249 |
MODEL = "{MODEL}"
|
|
|
|
| 250 |
SYSTEM_PROMPT = "{system_prompt}"
|
| 251 |
-
os.environ["
|
| 252 |
|
| 253 |
with Pipeline(name="sft") as pipeline:
|
| 254 |
magpie = MagpieGenerator(
|
| 255 |
llm=InferenceEndpointsLLM(
|
| 256 |
model_id=MODEL,
|
| 257 |
tokenizer_id=MODEL,
|
|
|
|
| 258 |
magpie_pre_query_template="llama3",
|
| 259 |
generation_kwargs={{
|
| 260 |
"temperature": 0.9,
|
|
@@ -262,7 +271,7 @@ with Pipeline(name="sft") as pipeline:
|
|
| 262 |
"max_new_tokens": 2048,
|
| 263 |
"stop_sequences": {_STOP_SEQUENCES}
|
| 264 |
}},
|
| 265 |
-
api_key=os.environ["
|
| 266 |
),
|
| 267 |
n_turns={num_turns},
|
| 268 |
num_rows={num_rows},
|
|
|
|
| 1 |
from distilabel.llms import InferenceEndpointsLLM
|
| 2 |
from distilabel.steps.tasks import ChatGeneration, Magpie, TextGeneration
|
| 3 |
|
| 4 |
+
from distilabel_dataset_generator.constants import (
|
| 5 |
+
BASE_URL,
|
| 6 |
+
MAGPIE_PRE_QUERY_TEMPLATE,
|
| 7 |
MODEL,
|
|
|
|
| 8 |
)
|
| 9 |
+
from distilabel_dataset_generator.pipelines.base import _get_next_api_key
|
| 10 |
|
| 11 |
INFORMATION_SEEKING_PROMPT = (
|
| 12 |
"You are an AI assistant designed to provide accurate and concise information on a wide"
|
|
|
|
| 146 |
api_key=_get_next_api_key(),
|
| 147 |
model_id=MODEL,
|
| 148 |
tokenizer_id=MODEL,
|
| 149 |
+
base_url=BASE_URL,
|
| 150 |
generation_kwargs={
|
| 151 |
"temperature": temperature,
|
| 152 |
"max_new_tokens": 2048,
|
|
|
|
| 168 |
llm=InferenceEndpointsLLM(
|
| 169 |
model_id=MODEL,
|
| 170 |
tokenizer_id=MODEL,
|
| 171 |
+
base_url=BASE_URL,
|
| 172 |
api_key=_get_next_api_key(),
|
| 173 |
+
magpie_pre_query_template=MAGPIE_PRE_QUERY_TEMPLATE,
|
| 174 |
generation_kwargs={
|
| 175 |
"temperature": 0.9,
|
| 176 |
"do_sample": True,
|
|
|
|
| 188 |
llm=InferenceEndpointsLLM(
|
| 189 |
model_id=MODEL,
|
| 190 |
tokenizer_id=MODEL,
|
| 191 |
+
base_url=BASE_URL,
|
| 192 |
api_key=_get_next_api_key(),
|
| 193 |
+
magpie_pre_query_template=MAGPIE_PRE_QUERY_TEMPLATE,
|
| 194 |
generation_kwargs={
|
| 195 |
"temperature": 0.9,
|
| 196 |
"do_sample": True,
|
|
|
|
| 213 |
llm=InferenceEndpointsLLM(
|
| 214 |
model_id=MODEL,
|
| 215 |
tokenizer_id=MODEL,
|
| 216 |
+
base_url=BASE_URL,
|
| 217 |
api_key=_get_next_api_key(),
|
| 218 |
generation_kwargs={
|
| 219 |
"temperature": 0.8,
|
|
|
|
| 229 |
llm=InferenceEndpointsLLM(
|
| 230 |
model_id=MODEL,
|
| 231 |
tokenizer_id=MODEL,
|
| 232 |
+
base_url=BASE_URL,
|
| 233 |
api_key=_get_next_api_key(),
|
| 234 |
generation_kwargs={
|
| 235 |
"temperature": 0.8,
|
|
|
|
| 254 |
from distilabel.llms import InferenceEndpointsLLM
|
| 255 |
|
| 256 |
MODEL = "{MODEL}"
|
| 257 |
+
BASE_URL = "{BASE_URL}"
|
| 258 |
SYSTEM_PROMPT = "{system_prompt}"
|
| 259 |
+
os.environ["API_KEY"] = "hf_xxx" # https://huggingface.co/settings/tokens/new?ownUserPermissions=repo.content.read&ownUserPermissions=repo.write&globalPermissions=inference.serverless.write&canReadGatedRepos=true&tokenType=fineGrained
|
| 260 |
|
| 261 |
with Pipeline(name="sft") as pipeline:
|
| 262 |
magpie = MagpieGenerator(
|
| 263 |
llm=InferenceEndpointsLLM(
|
| 264 |
model_id=MODEL,
|
| 265 |
tokenizer_id=MODEL,
|
| 266 |
+
base_url=BASE_URL,
|
| 267 |
magpie_pre_query_template="llama3",
|
| 268 |
generation_kwargs={{
|
| 269 |
"temperature": 0.9,
|
|
|
|
| 271 |
"max_new_tokens": 2048,
|
| 272 |
"stop_sequences": {_STOP_SEQUENCES}
|
| 273 |
}},
|
| 274 |
+
api_key=os.environ["BASE_URL"],
|
| 275 |
),
|
| 276 |
n_turns={num_turns},
|
| 277 |
num_rows={num_rows},
|
src/distilabel_dataset_generator/pipelines/textcat.py
CHANGED
|
@@ -1,5 +1,4 @@
|
|
| 1 |
import random
|
| 2 |
-
from pydantic import BaseModel, Field
|
| 3 |
from typing import List
|
| 4 |
|
| 5 |
from distilabel.llms import InferenceEndpointsLLM
|
|
@@ -8,12 +7,11 @@ from distilabel.steps.tasks import (
|
|
| 8 |
TextClassification,
|
| 9 |
TextGeneration,
|
| 10 |
)
|
|
|
|
| 11 |
|
| 12 |
-
from
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
)
|
| 16 |
-
from src.distilabel_dataset_generator.utils import get_preprocess_labels
|
| 17 |
|
| 18 |
PROMPT_CREATION_PROMPT = """You are an AI assistant specialized in generating very precise text classification tasks for dataset creation.
|
| 19 |
|
|
@@ -73,7 +71,7 @@ def get_prompt_generator(temperature):
|
|
| 73 |
llm=InferenceEndpointsLLM(
|
| 74 |
api_key=_get_next_api_key(),
|
| 75 |
model_id=MODEL,
|
| 76 |
-
|
| 77 |
structured_output={"format": "json", "schema": TextClassificationTask},
|
| 78 |
generation_kwargs={
|
| 79 |
"temperature": temperature,
|
|
@@ -92,7 +90,7 @@ def get_textcat_generator(difficulty, clarity, is_sample):
|
|
| 92 |
textcat_generator = GenerateTextClassificationData(
|
| 93 |
llm=InferenceEndpointsLLM(
|
| 94 |
model_id=MODEL,
|
| 95 |
-
|
| 96 |
api_key=_get_next_api_key(),
|
| 97 |
generation_kwargs={
|
| 98 |
"temperature": 0.9,
|
|
@@ -114,7 +112,7 @@ def get_labeller_generator(system_prompt, labels, num_labels):
|
|
| 114 |
labeller_generator = TextClassification(
|
| 115 |
llm=InferenceEndpointsLLM(
|
| 116 |
model_id=MODEL,
|
| 117 |
-
|
| 118 |
api_key=_get_next_api_key(),
|
| 119 |
generation_kwargs={
|
| 120 |
"temperature": 0.7,
|
|
@@ -149,8 +147,9 @@ from distilabel.steps import LoadDataFromDicts, KeepColumns
|
|
| 149 |
from distilabel.steps.tasks import {"GenerateTextClassificationData" if num_labels == 1 else "GenerateTextClassificationData, TextClassification"}
|
| 150 |
|
| 151 |
MODEL = "{MODEL}"
|
|
|
|
| 152 |
TEXT_CLASSIFICATION_TASK = "{system_prompt}"
|
| 153 |
-
os.environ["
|
| 154 |
"hf_xxx" # https://huggingface.co/settings/tokens/new?ownUserPermissions=repo.content.read&ownUserPermissions=repo.write&globalPermissions=inference.serverless.write&canReadGatedRepos=true&tokenType=fineGrained
|
| 155 |
)
|
| 156 |
|
|
@@ -161,8 +160,8 @@ with Pipeline(name="textcat") as pipeline:
|
|
| 161 |
textcat_generation = GenerateTextClassificationData(
|
| 162 |
llm=InferenceEndpointsLLM(
|
| 163 |
model_id=MODEL,
|
| 164 |
-
|
| 165 |
-
api_key=os.environ["
|
| 166 |
generation_kwargs={{
|
| 167 |
"temperature": 0.8,
|
| 168 |
"max_new_tokens": 2048,
|
|
@@ -205,8 +204,8 @@ with Pipeline(name="textcat") as pipeline:
|
|
| 205 |
textcat_labeller = TextClassification(
|
| 206 |
llm=InferenceEndpointsLLM(
|
| 207 |
model_id=MODEL,
|
| 208 |
-
|
| 209 |
-
api_key=os.environ["
|
| 210 |
generation_kwargs={{
|
| 211 |
"temperature": 0.8,
|
| 212 |
"max_new_tokens": 2048,
|
|
|
|
| 1 |
import random
|
|
|
|
| 2 |
from typing import List
|
| 3 |
|
| 4 |
from distilabel.llms import InferenceEndpointsLLM
|
|
|
|
| 7 |
TextClassification,
|
| 8 |
TextGeneration,
|
| 9 |
)
|
| 10 |
+
from pydantic import BaseModel, Field
|
| 11 |
|
| 12 |
+
from distilabel_dataset_generator.constants import BASE_URL, MODEL
|
| 13 |
+
from distilabel_dataset_generator.pipelines.base import _get_next_api_key
|
| 14 |
+
from distilabel_dataset_generator.utils import get_preprocess_labels
|
|
|
|
|
|
|
| 15 |
|
| 16 |
PROMPT_CREATION_PROMPT = """You are an AI assistant specialized in generating very precise text classification tasks for dataset creation.
|
| 17 |
|
|
|
|
| 71 |
llm=InferenceEndpointsLLM(
|
| 72 |
api_key=_get_next_api_key(),
|
| 73 |
model_id=MODEL,
|
| 74 |
+
base_url=BASE_URL,
|
| 75 |
structured_output={"format": "json", "schema": TextClassificationTask},
|
| 76 |
generation_kwargs={
|
| 77 |
"temperature": temperature,
|
|
|
|
| 90 |
textcat_generator = GenerateTextClassificationData(
|
| 91 |
llm=InferenceEndpointsLLM(
|
| 92 |
model_id=MODEL,
|
| 93 |
+
base_url=BASE_URL,
|
| 94 |
api_key=_get_next_api_key(),
|
| 95 |
generation_kwargs={
|
| 96 |
"temperature": 0.9,
|
|
|
|
| 112 |
labeller_generator = TextClassification(
|
| 113 |
llm=InferenceEndpointsLLM(
|
| 114 |
model_id=MODEL,
|
| 115 |
+
base_url=BASE_URL,
|
| 116 |
api_key=_get_next_api_key(),
|
| 117 |
generation_kwargs={
|
| 118 |
"temperature": 0.7,
|
|
|
|
| 147 |
from distilabel.steps.tasks import {"GenerateTextClassificationData" if num_labels == 1 else "GenerateTextClassificationData, TextClassification"}
|
| 148 |
|
| 149 |
MODEL = "{MODEL}"
|
| 150 |
+
BASE_URL = "{BASE_URL}"
|
| 151 |
TEXT_CLASSIFICATION_TASK = "{system_prompt}"
|
| 152 |
+
os.environ["API_KEY"] = (
|
| 153 |
"hf_xxx" # https://huggingface.co/settings/tokens/new?ownUserPermissions=repo.content.read&ownUserPermissions=repo.write&globalPermissions=inference.serverless.write&canReadGatedRepos=true&tokenType=fineGrained
|
| 154 |
)
|
| 155 |
|
|
|
|
| 160 |
textcat_generation = GenerateTextClassificationData(
|
| 161 |
llm=InferenceEndpointsLLM(
|
| 162 |
model_id=MODEL,
|
| 163 |
+
base_url=BASE_URL,
|
| 164 |
+
api_key=os.environ["API_KEY"],
|
| 165 |
generation_kwargs={{
|
| 166 |
"temperature": 0.8,
|
| 167 |
"max_new_tokens": 2048,
|
|
|
|
| 204 |
textcat_labeller = TextClassification(
|
| 205 |
llm=InferenceEndpointsLLM(
|
| 206 |
model_id=MODEL,
|
| 207 |
+
base_url=BASE_URL,
|
| 208 |
+
api_key=os.environ["API_KEY"],
|
| 209 |
generation_kwargs={{
|
| 210 |
"temperature": 0.8,
|
| 211 |
"max_new_tokens": 2048,
|
src/distilabel_dataset_generator/utils.py
CHANGED
|
@@ -15,7 +15,7 @@ from gradio.oauth import (
|
|
| 15 |
from huggingface_hub import whoami
|
| 16 |
from jinja2 import Environment, meta
|
| 17 |
|
| 18 |
-
from
|
| 19 |
|
| 20 |
_LOGGED_OUT_CSS = ".main_ui_logged_out{opacity: 0.3; pointer-events: none}"
|
| 21 |
|
|
|
|
| 15 |
from huggingface_hub import whoami
|
| 16 |
from jinja2 import Environment, meta
|
| 17 |
|
| 18 |
+
from distilabel_dataset_generator.constants import argilla_client
|
| 19 |
|
| 20 |
_LOGGED_OUT_CSS = ".main_ui_logged_out{opacity: 0.3; pointer-events: none}"
|
| 21 |
|