Commit
·
e36317e
1
Parent(s):
836e6dc
Upgrade gradio
Browse files- README.md +63 -1
- app.py +91 -16
- requirements.txt +11 -2
README.md
CHANGED
@@ -11,4 +11,66 @@ license: mit
|
|
11 |
short_description: OpenAlex/bert-base-multilingual-cased-finetuned-openalex-top
|
12 |
---
|
13 |
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
short_description: OpenAlex/bert-base-multilingual-cased-finetuned-openalex-top
|
12 |
---
|
13 |
|
14 |
+
# OpenAlex Topic Classification
|
15 |
+
|
16 |
+
This application allows you to classify academic texts into different topics using machine learning models trained with OpenAlex data.
|
17 |
+
|
18 |
+
## Features
|
19 |
+
|
20 |
+
- Classification of academic texts into multiple topics
|
21 |
+
- Uses two different models for more robust classification
|
22 |
+
- Easy-to-use web interface
|
23 |
+
- Support for structured title and abstract format
|
24 |
+
|
25 |
+
## Requirements
|
26 |
+
|
27 |
+
- Python 3.7+
|
28 |
+
- Gradio 5.23.1
|
29 |
+
- Transformers (Hugging Face)
|
30 |
+
|
31 |
+
## Installation
|
32 |
+
|
33 |
+
```bash
|
34 |
+
pip install -r requirements.txt
|
35 |
+
```
|
36 |
+
|
37 |
+
## Usage
|
38 |
+
|
39 |
+
1. Run the application:
|
40 |
+
```bash
|
41 |
+
python app.py
|
42 |
+
```
|
43 |
+
|
44 |
+
2. Open your browser at the address shown in the console (usually http://localhost:7860)
|
45 |
+
|
46 |
+
3. Enter your text in the format:
|
47 |
+
```
|
48 |
+
<TITLE> Your title here
|
49 |
+
<ABSTRACT> Your abstract here
|
50 |
+
```
|
51 |
+
|
52 |
+
4. Select the number of classifications you want to see (top_k)
|
53 |
+
|
54 |
+
5. Click "Submit" to get the results
|
55 |
+
|
56 |
+
## Models
|
57 |
+
|
58 |
+
The application uses two different models:
|
59 |
+
1. [OpenAlex/bert-base-multilingual-cased-finetuned-openalex-topic-classification-title-abstract](https://huggingface.co/OpenAlex/bert-base-multilingual-cased-finetuned-openalex-topic-classification-title-abstract)
|
60 |
+
- Based on BERT multilingual model
|
61 |
+
- Fine-tuned on OpenAlex data
|
62 |
+
- Supports multiple languages
|
63 |
+
|
64 |
+
2. [albertmartinez/openalex-topic-classification-title-abstract](https://huggingface.co/albertmartinez/openalex-topic-classification-title-abstract)
|
65 |
+
- Based on BERT multilingual model
|
66 |
+
- Fine-tuned on OpenAlex data (https://huggingface.co/datasets/albertmartinez/openalex-topic-title-abstract)
|
67 |
+
- Supports multiple languages
|
68 |
+
|
69 |
+
## License
|
70 |
+
|
71 |
+
MIT
|
72 |
+
|
73 |
+
## References
|
74 |
+
|
75 |
+
- [OpenAlex](https://openalex.org/)
|
76 |
+
- [Hugging Face Spaces](https://huggingface.co/docs/hub/spaces-config-reference)
|
app.py
CHANGED
@@ -1,33 +1,108 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
|
|
3 |
|
4 |
-
#
|
5 |
-
|
6 |
-
|
7 |
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
def classify_text(text, top_k):
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
demo = gr.Interface(
|
19 |
fn=classify_text,
|
20 |
-
inputs=[
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
title="OpenAlex Topic Classification",
|
26 |
-
description="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
flagging_mode="never",
|
28 |
api_name="classify"
|
29 |
)
|
30 |
|
31 |
if __name__ == "__main__":
|
32 |
-
|
33 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
+
import logging
|
4 |
|
5 |
+
# Logging configuration
|
6 |
+
logging.basicConfig(level=logging.INFO)
|
7 |
+
logger = logging.getLogger(__name__)
|
8 |
|
9 |
+
# Model information
|
10 |
+
MODEL_LINKS = {
|
11 |
+
"OpenAlex": "https://huggingface.co/OpenAlex/bert-base-multilingual-cased-finetuned-openalex-topic-classification-title-abstract",
|
12 |
+
"albertmartinez": "https://huggingface.co/albertmartinez/openalex-topic-classification-title-abstract"
|
13 |
+
}
|
14 |
|
15 |
+
# Load models only once
|
16 |
+
try:
|
17 |
+
model = pipeline("text-classification",
|
18 |
+
model="OpenAlex/bert-base-multilingual-cased-finetuned-openalex-topic-classification-title-abstract")
|
19 |
+
model2 = pipeline("text-classification",
|
20 |
+
model="albertmartinez/openalex-topic-classification-title-abstract")
|
21 |
+
logger.info("Models loaded successfully")
|
22 |
+
except Exception as e:
|
23 |
+
logger.error(f"Error loading models: {str(e)}")
|
24 |
+
raise
|
25 |
|
26 |
def classify_text(text, top_k):
|
27 |
+
"""
|
28 |
+
Classify the given text using two different models.
|
29 |
+
|
30 |
+
Args:
|
31 |
+
text (str): Text to classify in format "<TITLE> {title}\n<ABSTRACT> {abstract}"
|
32 |
+
top_k (int): Number of classifications to return
|
33 |
+
|
34 |
+
Returns:
|
35 |
+
tuple: Two dictionaries with classifications from each model
|
36 |
+
"""
|
37 |
+
try:
|
38 |
+
if not text or not isinstance(text, str):
|
39 |
+
raise ValueError("Input text must be a non-empty string")
|
40 |
+
|
41 |
+
if not isinstance(top_k, int) or top_k < 1:
|
42 |
+
raise ValueError("top_k must be a positive integer")
|
43 |
+
|
44 |
+
results = [
|
45 |
+
{p["label"]: p["score"] for p in model(text, top_k=top_k, truncation=True, max_length=512)},
|
46 |
+
{p["label"]: p["score"] for p in model2(text, top_k=top_k, truncation=True, max_length=512)}
|
47 |
+
]
|
48 |
+
return results
|
49 |
+
except Exception as e:
|
50 |
+
logger.error(f"Classification error: {str(e)}")
|
51 |
+
raise gr.Error(f"Classification error: {str(e)}")
|
52 |
+
|
53 |
+
# Example text
|
54 |
+
EXAMPLE_TEXT = """<TITLE> Machine Learning Applications in Healthcare
|
55 |
+
<ABSTRACT> This paper explores the use of machine learning algorithms in healthcare systems for disease prediction and diagnosis."""
|
56 |
|
57 |
demo = gr.Interface(
|
58 |
fn=classify_text,
|
59 |
+
inputs=[
|
60 |
+
gr.Textbox(
|
61 |
+
lines=5,
|
62 |
+
label="Text",
|
63 |
+
placeholder="<TITLE> {title}\n<ABSTRACT> {abstract}",
|
64 |
+
value=EXAMPLE_TEXT
|
65 |
+
),
|
66 |
+
gr.Number(
|
67 |
+
label="Number of classifications (top_k)",
|
68 |
+
value=10,
|
69 |
+
precision=0,
|
70 |
+
minimum=1,
|
71 |
+
maximum=20
|
72 |
+
)
|
73 |
+
],
|
74 |
+
outputs=[
|
75 |
+
gr.Label(label="Model 1: OpenAlex"),
|
76 |
+
gr.Label(label="Model 2: albertmartinez")
|
77 |
+
],
|
78 |
title="OpenAlex Topic Classification",
|
79 |
+
description="""
|
80 |
+
Enter a text with title and abstract to get its topic classification.
|
81 |
+
|
82 |
+
Input format:
|
83 |
+
```
|
84 |
+
<TITLE> Your title here
|
85 |
+
<ABSTRACT> Your abstract here
|
86 |
+
```
|
87 |
+
|
88 |
+
The system uses two different models to provide a more robust classification:
|
89 |
+
|
90 |
+
1. [OpenAlex Model]({openalex_link}): Based on BERT multilingual model, fine-tuned on OpenAlex data
|
91 |
+
2. [AlbertMartinez Model]({albert_link}): Based on BERT multilingual model, fine-tuned on [OpenAlex data](https://huggingface.co/datasets/albertmartinez/openalex-topic-title-abstract)
|
92 |
+
|
93 |
+
For more information about the models and their performance, visit their Hugging Face pages.
|
94 |
+
""".format(
|
95 |
+
openalex_link=MODEL_LINKS["OpenAlex"],
|
96 |
+
albert_link=MODEL_LINKS["albertmartinez"]
|
97 |
+
),
|
98 |
+
examples=[
|
99 |
+
[EXAMPLE_TEXT, 5],
|
100 |
+
["<TITLE> Climate Change Impact\n<ABSTRACT> Study of global warming effects on biodiversity", 3]
|
101 |
+
],
|
102 |
flagging_mode="never",
|
103 |
api_name="classify"
|
104 |
)
|
105 |
|
106 |
if __name__ == "__main__":
|
107 |
+
logger.info(f"Gradio version: {gr.__version__}")
|
108 |
demo.launch()
|
requirements.txt
CHANGED
@@ -1,2 +1,11 @@
|
|
1 |
-
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==5.33.1
|
2 |
+
transformers>=4.41.0,<5.0.0
|
3 |
+
torch==2.3.1
|
4 |
+
torchvision==0.18.1
|
5 |
+
torchaudio==2.3.1
|
6 |
+
numpy==1.26.4
|
7 |
+
sentencepiece>=0.1.99
|
8 |
+
protobuf>=4.25.2
|
9 |
+
accelerate>=0.27.2
|
10 |
+
huggingface-hub>=0.20.3
|
11 |
+
sentence-transformers>=3.3.1
|