File size: 7,391 Bytes
c83ea75
8f83d30
21984da
 
 
 
8f83d30
b65ed51
21984da
6333c01
 
 
 
 
 
 
21984da
 
b65ed51
21984da
 
 
6333c01
21984da
6333c01
21984da
b65ed51
6333c01
 
 
d3a63c7
6333c01
 
 
 
 
 
 
 
89c2219
 
6333c01
89c2219
 
21984da
6333c01
21984da
89c2219
21984da
b65ed51
21984da
6333c01
 
21984da
 
89c2219
820d582
 
21984da
 
89c2219
e04910c
 
6333c01
 
 
83c1d27
e04910c
6333c01
 
 
 
 
 
 
 
83c1d27
e04910c
6333c01
 
 
dd1004f
 
6333c01
 
 
 
dd1004f
 
6333c01
 
d8b712b
e04910c
21984da
6333c01
 
 
21984da
b65ed51
21984da
6333c01
 
 
 
820d582
 
6333c01
e04910c
 
d3a63c7
e04910c
21984da
 
 
 
 
330831b
352c4a4
 
21984da
 
 
83c1d27
 
be6ef73
83c1d27
 
d9fcab3
6333c01
 
 
a3d2ab9
6333c01
 
dd1004f
31bb3de
6333c01
 
 
 
 
8609555
6333c01
 
 
 
 
 
 
 
 
 
 
21984da
34dc74c
 
 
21984da
 
34dc74c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21984da
34dc74c
 
 
 
 
6cdc3c5
 
 
6333c01
21984da
 
6333c01
31bb3de
6cdc3c5
21984da
31bb3de
34dc74c
 
 
21984da
 
34dc74c
21984da
34dc74c
 
 
21984da
 
34dc74c
21984da
34dc74c
 
21984da
 
34dc74c
 
21984da
 
6333c01
 
 
 
 
 
21984da
83c1d27
7544a8f
352c4a4
 
 
89c2219
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import gradio as gr
from ai_logic import (
    responder_como_aldo,
    build_and_save_vector_store,
    MODELS,
    DEFAULT_MODEL
)

css_customizado = """
.gradio-container {
    max-width: 1400px !important;
    margin: 0 auto;
    width: 99%;
    height: 100vh !important;
    display: flex;
    flex-direction: column;
    overflow: hidden;
}

.main-content {
    display: flex;
    flex-direction: column;
    height: 100vh;
    overflow: hidden;
    flex-shrink: 0;
}

.titulo-principal {
    background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
    color: white !important;
    padding: 10px !important;
    border-radius: 10px !important;
    margin-bottom: 10px !important;
    text-align: center !important;
    flex-shrink: 0;
}

.chat-area {
    flex: 1;
    display: flex;
    flex-direction: column;
    overflow: hidden;
}

.chat-container {
    flex: 1;
    overflow-y: auto;
    margin-bottom: 10px;
}

.input-container {
    flex-shrink: 0;
    padding: 10px 0;
    display: flex;
    flex-direction: column;
    justify-content: center;
}

.additional-content {
    overflow-y: auto;
    padding-top: 20px;
}

.gr-textbox textarea {
    font-size: 14px !important;
    line-height: 1.5 !important;
}

.resposta-container {
    background-color: #ffffff !important;
    color: #1a1a1a !important;
    border: 1px solid #e0e0e0 !important;
    border-radius: 20px !important;
    padding: 20px !important;
    margin: 10px 0 !important;
    box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05) !important;
}

.resposta-container pre code {
    color: #1a1a1a !important;
    background-color: #f8f9fa !important;
}

.pergunta-container {
    background-color: #f0f8ff !important;
    border-radius: 8px !important;
    padding: 15px !important;
}

.modelo-dropdown {
    margin-bottom: 15px !important;
}

#entrada_usuario textarea {
    color: white !important;
    font-size: large !important;
    background-color: #1a1a1a !important;
    min-height: 60px !important;
}

.message-content {
    font-size: larger;
    color: white !important;
    background-color: #1a1a1a !important;
}

/* Responsivo */
@media (max-width: 768px) {
    .titulo-principal {
        padding: 10px !important;
    }
    #entrada_usuario textarea {
        min-height: 50px !important;
        font-size: 16px !important;
    }
}
#component-6{flex-grow: initial !important;}
"""

def criar_interface():
    with gr.Blocks(title="Dr. Aldo Henrique - API Externa", theme=gr.themes.Soft(), css=css_customizado) as interface:
        with gr.Column(elem_classes="main-content"):
            gr.HTML("""
            <div class="titulo-principal">
                <h4 style="margin: 0;">🤖 iAldo - Converse com o <a href="https://aldohenrique.com.br/" style="color: white; text-decoration: underline;">Prof. Dr. Aldo Henrique</a></h4>
            </div>
            """)

            with gr.Column(elem_classes="chat-area"):
                with gr.Column(elem_classes="chat-container"):
                    chatbot = gr.Chatbot(
                        label="💬 Area do chat",
                        elem_id="chat",
                        height="100%"
                    )

                with gr.Column(elem_classes="input-container"):
                    with gr.Row():
                        modelo_select = gr.Dropdown(
                            choices=list(MODELS.keys()),
                            value=DEFAULT_MODEL,
                            label="🧠 Selecione o Modelo de Pensamento",
                            elem_classes="modelo-dropdown"
                        )
                    with gr.Row():
                        user_input = gr.Textbox(
                            show_label=False,
                            placeholder="Digite sua pergunta e pressione Enter ou clique em Enviar",
                            lines=2,
                            elem_id="entrada_usuario"
                        )
                        enviar_btn = gr.Button("Enviar", variant="primary")

        with gr.Column(elem_classes="additional-content"):
            with gr.Accordion("⚙️ Controle do Conhecimento (RAG)", open=False):
                status_rag = gr.Textbox(label="Status do Retreino", interactive=False)
                botao_retreinar = gr.Button("🔄 Atualizar Conhecimento do Blog", variant="stop")
                download_faiss_file = gr.File(label="Download do Índice FAISS", interactive=False, file_count="single", file_types=[".pkl"])
                download_urls_file = gr.File(label="Download das URLs Processadas", interactive=False, file_count="single", file_types=[".pkl"])

            with gr.Accordion("📚 Exemplos de Perguntas", open=False):
                gr.Examples(
                    examples=[
                        ["Como implementar uma lista ligada em C com todas as operações básicas?", DEFAULT_MODEL],
                        ["Qual a sua opinião sobre o uso de ponteiros em C++ moderno, baseada no seu blog?", "Mistral 7B"],
                        ["Resuma o que você escreveu sobre machine learning no seu blog.", "Zephyr 7B"],
                    ],
                    inputs=[user_input, modelo_select]
                )

            with gr.Accordion("🔧 Status da API", open=False):
                status_api = gr.Textbox(label="Status dos Modelos", interactive=False, lines=8)

            with gr.Accordion("ℹ️ Informações", open=False):
                gr.Markdown("""
                ### Sobre o Dr. Aldo Henrique:
                - **Especialidade**: Linguagens C, Java, Desenvolvimento Web, Inteligência Artificial
                - **Conhecimento Adicional**: Conteúdo do blog aldohenrique.com.br

                ### Dicas para melhores respostas:
                - Faça perguntas específicas sobre o conteúdo do blog para ver o RAG em ação!
                - Peça resumos ou opiniões sobre temas que o professor aborda.
                """)

        def responder(chat_history, user_msg, modelo):
            if not user_msg.strip():
                return chat_history, ""

            chat_history = chat_history + [[user_msg, "Dr. Aldo Henrique está digitando..."]]
            yield chat_history, ""

            resposta_final = responder_como_aldo(user_msg, modelo)
            chat_history[-1][1] = resposta_final
            yield chat_history, ""

        enviar_btn.click(
            fn=responder,
            inputs=[chatbot, user_input, modelo_select],
            outputs=[chatbot, user_input],
            show_progress=True
        )

        user_input.submit(
            fn=responder,
            inputs=[chatbot, user_input, modelo_select],
            outputs=[chatbot, user_input],
            show_progress=True
        )

        botao_retreinar.click(
            fn=build_and_save_vector_store,
            outputs=[status_rag, download_faiss_file, download_urls_file],
            show_progress=True
        )

        gr.HTML("""
        <script>
            window.addEventListener("load", function() {
                const textarea = document.querySelector("#entrada_usuario textarea");
                if (textarea) {
                    setTimeout(() => textarea.focus(), 100);
                }
            });
        </script>
        """)

    return interface

def configurar_interface():
    return criar_interface()