File size: 9,046 Bytes
ba345bc
c83ea75
bdf9792
8f83d30
21984da
 
 
ba345bc
 
8f83d30
b65ed51
21984da
6333c01
 
 
 
 
 
 
21984da
 
b65ed51
21984da
 
 
6333c01
21984da
6333c01
21984da
b65ed51
6333c01
 
 
d3a63c7
6333c01
 
 
 
 
 
 
 
89c2219
 
6333c01
89c2219
 
21984da
6333c01
21984da
89c2219
21984da
b65ed51
21984da
6333c01
 
21984da
 
89c2219
820d582
 
21984da
 
89c2219
e04910c
 
6333c01
 
 
83c1d27
e04910c
6333c01
 
 
 
 
 
 
 
83c1d27
e04910c
6333c01
 
 
dd1004f
 
6333c01
 
 
 
dd1004f
 
6333c01
 
d8b712b
e04910c
21984da
6333c01
 
 
21984da
b65ed51
21984da
6333c01
130079c
6333c01
 
 
820d582
 
6333c01
e04910c
 
d3a63c7
e04910c
21984da
 
 
 
 
330831b
37eb470
c6bb867
 
 
352c4a4
 
21984da
 
bdf9792
 
21984da
83c1d27
 
be6ef73
83c1d27
 
d9fcab3
6333c01
 
 
bdf9792
6333c01
 
dd1004f
31bb3de
6333c01
 
ba345bc
6333c01
ba345bc
6333c01
8609555
6333c01
 
 
 
 
 
 
 
 
 
 
21984da
34dc74c
 
 
21984da
 
34dc74c
 
 
 
 
ba345bc
 
34dc74c
 
 
 
 
ba345bc
 
 
 
 
34dc74c
 
 
 
 
 
21984da
34dc74c
 
 
 
 
bdf9792
 
6cdc3c5
 
6333c01
21984da
 
6333c01
bdf9792
6cdc3c5
21984da
31bb3de
bdf9792
34dc74c
 
bdf9792
21984da
 
34dc74c
21984da
34dc74c
 
bdf9792
21984da
 
34dc74c
21984da
34dc74c
 
21984da
 
34dc74c
 
21984da
 
6333c01
 
 
 
 
 
21984da
83c1d27
7544a8f
352c4a4
 
 
ba345bc
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
# interface.py
import gradio as gr
import uuid
from ai_logic import (
    responder_como_aldo,
    build_and_save_vector_store,
    MODELS,
    DEFAULT_MODEL,
    inicializar_sistema # <--- Import the initialization function
)

css_customizado = """
.gradio-container {
    max-width: 1400px !important;
    margin: 0 auto;
    width: 99%;
    height: 100vh !important;
    display: flex;
    flex-direction: column;
    overflow: hidden;
}

.main-content {
    display: flex;
    flex-direction: column;
    height: 100vh;
    overflow: hidden;
    flex-shrink: 0;
}

.titulo-principal {
    background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
    color: white !important;
    padding: 10px !important;
    border-radius: 10px !important;
    margin-bottom: 10px !important;
    text-align: center !important;
    flex-shrink: 0;
}

.chat-area {
    flex: 1;
    display: flex;
    flex-direction: column;
    overflow: hidden;
}

.chat-container {
    flex: 1;
    overflow-y: auto;
    margin-bottom: 10px;
}

.input-container {
    flex-shrink: 0;
    padding: 10px 0;
    display: flex;
    flex-direction: column;
    justify-content: center;
}

.additional-content {
    overflow-y: auto;
    padding-top: 20px;
}

.gr-textbox textarea {
    font-size: 14px !important;
    line-height: 1.5 !important;
}

.resposta-container {
    background-color: #ffffff !important;
    color: #1a1a1a !important;
    border: 1px solid #e0e0e0 !important;
    border-radius: 20px !important;
    padding: 20px !important;
    margin: 10px 0 !important;
    box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05) !important;
}

.resposta-container pre code {
    color: #1a1a1a !important;
    background-color: #f8f9fa !important;
}

.pergunta-container {
    background-color: #f0f8ff !important;
    border-radius: 8px !important;
    padding: 15px !important;
}

.modelo-dropdown {
    margin-bottom: 15px !important;
}

#entrada_usuario textarea {
    color: white !important;
    font-size: large !important;
    background-color: #1a1a1a !important;
    min-height: 60px !important;
}

.message-content {
    opacity: 1 !important;
    font-size: larger;
    color: white !important;
    background-color: #1a1a1a !important;
}

/* Responsivo */
@media (max-width: 768px) {
    .titulo-principal {
        padding: 10px !important;
    }
    #entrada_usuario textarea {
        min-height: 50px !important;
        font-size: 16px !important;
    }
}
#component-6{flex-grow: initial !important;}
#component-7{flex-grow: initial !important;}
.message-wrap.svelte-gjtrl6 .prose.chatbot.md {
    opacity: 1 !important;
}
"""

def criar_interface():
    with gr.Blocks(title="Dr. Aldo Henrique - API Externa", theme=gr.themes.Soft(), css=css_customizado) as interface:
        session_id_state = gr.State(str(uuid.uuid4()))  # Geração do session_id único

        with gr.Column(elem_classes="main-content"):
            gr.HTML("""
            <div class="titulo-principal">
                <h4 style="margin: 0;">🤖 iAldo - Converse com o <a href="https://aldohenrique.com.br/" style="color: white; text-decoration: underline;">Prof. Dr. Aldo Henrique</a></h4>
            </div>
            """)

            with gr.Column(elem_classes="chat-area"):
                with gr.Column(elem_classes="chat-container"):
                    chatbot = gr.Chatbot(
                        label="💬 Área do chat",
                        elem_id="chat",
                        height="100%"
                    )

                with gr.Column(elem_classes="input-container"):
                    with gr.Row():
                        # The choices for the dropdown now depend on the globally updated MODELS from ai_logic
                        modelo_select = gr.Dropdown(
                            choices=list(MODELS.keys()), # <--- Uses the MODELS dict from ai_logic
                            value=DEFAULT_MODEL,
                            label="🧠 Selecione o Modelo de Pensamento",
                            elem_classes="modelo-dropdown"
                        )
                    with gr.Row():
                        user_input = gr.Textbox(
                            show_label=False,
                            placeholder="Digite sua pergunta e pressione Enter ou clique em Enviar",
                            lines=2,
                            elem_id="entrada_usuario"
                        )
                        enviar_btn = gr.Button("Enviar", variant="primary")

        with gr.Column(elem_classes="additional-content"):
            with gr.Accordion("⚙️ Controle do Conhecimento (RAG)", open=False):
                status_rag = gr.Textbox(label="Status do Retreino", interactive=False)
                botao_retreinar = gr.Button("🔄 Atualizar Conhecimento do Blog", variant="stop")
                download_faiss_file = gr.File(label="Download do Índice FAISS", interactive=False, file_count="single", file_types=[".pkl"])
                download_urls_file = gr.File(label="Download das URLs Processadas", interactive=False, file_count="single", file_types=[".pkl"])

            with gr.Accordion("📚 Exemplos de Perguntas", open=False):
                gr.Examples(
                    examples=[
                        ["Como implementar uma lista ligada em C com todas as operações básicas?", DEFAULT_MODEL],
                        ["Qual a sua opinião sobre o uso de ponteiros em C++ moderno, baseada no seu blog?", "Mistral 7B (Mais acertivo)"], # Use label, not model name
                        ["Resuma o que você escreveu sobre machine learning no seu blog.", "Zephyr 7B (Meio Termo)"], # Use label, not model name
                    ],
                    inputs=[user_input, modelo_select]
                )

            with gr.Accordion("🔧 Status da API", open=False):
                # We can't directly show model status here without re-running tests.
                # For simplicity, we'll assume if the page loads, models are good.
                status_api = gr.Textbox(label="Status dos Modelos", interactive=False, lines=8, 
                                        value="Modelos carregados com sucesso! Verifique o console para detalhes.")


            with gr.Accordion("ℹ️ Informações", open=False):
                gr.Markdown("""
                ### Sobre o Dr. Aldo Henrique:
                - **Especialidade**: Linguagens C, Java, Desenvolvimento Web, Inteligência Artificial
                - **Conhecimento Adicional**: Conteúdo do blog aldohenrique.com.br

                ### Dicas para melhores respostas:
                - Faça perguntas específicas sobre o conteúdo do blog para ver o RAG em ação!
                - Peça resumos ou opiniões sobre temas que o professor aborda.
                """)

        # ✅ Função corrigida com uso de session_id
        def responder(chat_history, user_msg, modelo, session_id):
            if not user_msg.strip():
                return chat_history, ""

            chat_history = chat_history + [[user_msg, "Dr. Aldo Henrique está digitando..."]]
            yield chat_history, ""

            resposta_final = responder_como_aldo(session_id, user_msg, modelo)
            chat_history[-1][1] = resposta_final
            yield chat_history, ""

        # ✅ Botão e Enter usam o novo estado de sessão
        enviar_btn.click(
            fn=responder,
            inputs=[chatbot, user_input, modelo_select, session_id_state],
            outputs=[chatbot, user_input],
            show_progress=True
        )

        user_input.submit(
            fn=responder,
            inputs=[chatbot, user_input, modelo_select, session_id_state],
            outputs=[chatbot, user_input],
            show_progress=True
        )

        botao_retreinar.click(
            fn=build_and_save_vector_store,
            outputs=[status_rag, download_faiss_file, download_urls_file],
            show_progress=True
        )

        gr.HTML("""
        <script>
            window.addEventListener("load", function() {
                const textarea = document.querySelector("#entrada_usuario textarea");
                if (textarea) {
                    setTimeout(() => textarea.focus(), 100);
                }
            });
        </script>
        """)

    return interface

def configurar_interface():
    # Attempt to initialize the backend system and check for model availability
    if inicializar_sistema(): # <--- This is the key change
        return criar_interface() # Only create the Gradio interface if successful
    else:
        # If initialization fails, display an error page instead of the full interface
        return gr.HTML("<h1>Erro ao carregar a página: Não há modelos de IA suficientes disponíveis.</h1><p>Verifique o console para mais detalhes sobre os modelos e sua conexão com o Hugging Face.</p>")

# This part runs when you execute interface.py
if __name__ == "__main__":
    app = configurar_interface()
    app.launch()