Spaces:
Runtime error
Runtime error
change audio loading
Browse files
app.py
CHANGED
@@ -1,13 +1,9 @@
|
|
1 |
from pprint import pformat
|
2 |
|
3 |
-
import numpy as np
|
4 |
-
|
5 |
-
import torch
|
6 |
-
import torchaudio
|
7 |
-
from torchaudio.transforms import Resample
|
8 |
-
|
9 |
from huggingface_hub import hf_hub_download
|
10 |
|
|
|
|
|
11 |
import gradio as gr
|
12 |
|
13 |
from pipeline import PreTrainedPipeline
|
@@ -18,19 +14,12 @@ LM_HUB_FP = 'language_model/cv8be_5gram.bin'
|
|
18 |
|
19 |
|
20 |
def main(audio_fp: str):
|
21 |
-
audio
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
audio = torch.mean(audio, dim=0, keepdim=True)
|
28 |
-
converted_to_mono = True
|
29 |
-
|
30 |
-
# resample audio to 16kHz
|
31 |
-
resampler = Resample(orig_freq=sampling_rate, new_freq=16_000)
|
32 |
-
audio_resampled = resampler(audio)
|
33 |
-
inputs = audio_resampled.numpy().flatten() # cast to numpy as expected by the pipeline
|
34 |
|
35 |
# download Language Model from HF Hub
|
36 |
lm_fp = hf_hub_download(repo_id=HF_HUB_URL, filename=LM_HUB_FP)
|
@@ -46,12 +35,9 @@ def main(audio_fp: str):
|
|
46 |
tech_data = pipeline_res
|
47 |
del tech_data['text']
|
48 |
tech_data['sampling_rate_orig'] = sampling_rate
|
49 |
-
tech_data['init_audio_shape'] = init_audio_shape
|
50 |
-
tech_data['converted_to_mono'] = converted_to_mono
|
51 |
-
tech_data['resampled_audio_shape'] = audio_resampled.shape
|
52 |
tech_data['inputs_shape'] = inputs.shape
|
53 |
-
tech_data['inputs_max'] =
|
54 |
-
tech_data['inputs_min'] =
|
55 |
|
56 |
tech_data_str = pformat(tech_data)
|
57 |
|
|
|
1 |
from pprint import pformat
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
from huggingface_hub import hf_hub_download
|
4 |
|
5 |
+
import datasets as hfd
|
6 |
+
|
7 |
import gradio as gr
|
8 |
|
9 |
from pipeline import PreTrainedPipeline
|
|
|
14 |
|
15 |
|
16 |
def main(audio_fp: str):
|
17 |
+
# read and preprocess audio with huggingface.datasets
|
18 |
+
ds = hfd.Dataset.from_dict({'path': [audio_fp]})
|
19 |
+
ds = ds.cast_column('path', hfd.Audio(sampling_rate=16_000, mono=True))
|
20 |
+
ds = ds.rename_column('path', 'audio')
|
21 |
+
inputs = ds[0]['audio']['array']
|
22 |
+
sampling_rate = ds[0]['audio']['sampling_rate']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
# download Language Model from HF Hub
|
25 |
lm_fp = hf_hub_download(repo_id=HF_HUB_URL, filename=LM_HUB_FP)
|
|
|
35 |
tech_data = pipeline_res
|
36 |
del tech_data['text']
|
37 |
tech_data['sampling_rate_orig'] = sampling_rate
|
|
|
|
|
|
|
38 |
tech_data['inputs_shape'] = inputs.shape
|
39 |
+
tech_data['inputs_max'] = inputs.max().item()
|
40 |
+
tech_data['inputs_min'] = inputs.min().item()
|
41 |
|
42 |
tech_data_str = pformat(tech_data)
|
43 |
|