File size: 10,441 Bytes
69a5801
 
 
 
e0af3c6
 
69a5801
 
e0af3c6
 
 
 
 
 
 
 
 
 
 
 
 
 
69a5801
e0af3c6
 
 
 
2f09003
 
e0af3c6
 
 
 
 
 
 
 
 
69a5801
 
 
 
 
 
 
 
 
 
 
e0af3c6
 
 
 
 
 
 
 
 
 
 
2f09003
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0af3c6
 
 
 
 
 
69a5801
 
e0af3c6
69a5801
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0af3c6
 
 
 
 
69a5801
e0af3c6
69a5801
 
 
 
 
 
 
 
 
 
 
 
 
e0af3c6
 
 
 
 
69a5801
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0af3c6
 
 
69a5801
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0af3c6
 
 
 
 
 
 
 
 
 
 
 
69a5801
 
 
 
 
 
 
 
e0af3c6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import base64
import io
import logging
from typing import List
import os
import sys

import numpy as np
import gradio as gr

# Thêm class mô phỏng để giải quyết lỗi import
class MockGenerator:
    def __init__(self):
        self.sample_rate = 24000
        logging.info("Created mock generator with sample rate 24000")
    
    def generate(self, text, speaker, context=None, max_audio_length_ms=10000, temperature=0.9, topk=50):
        # Tạo âm thanh giả - chỉ là silence với độ dài tỷ lệ với text
        duration_seconds = min(len(text) * 0.1, max_audio_length_ms / 1000)
        samples = int(duration_seconds * self.sample_rate)
        logging.info(f"Generating mock audio with {samples} samples")
        return np.zeros(samples, dtype=np.float32)

# Import thực tế chỉ khi cần
try:
    import torch
    import torchaudio
    # Chỉ import các thành phần cần thiết
    from generator import Segment
    TORCH_AVAILABLE = True
except ImportError:
    TORCH_AVAILABLE = False
    # Tạo class Segment giả
    class Segment:
        def __init__(self, speaker, text, audio=None):
            self.speaker = speaker
            self.text = text
            self.audio = audio if audio is not None else np.zeros(0, dtype=np.float32)

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

generator = None

def initialize_model():
    global generator
    logger.info("Loading CSM 1B model...")
    
    try:
        if not TORCH_AVAILABLE:
            logger.warning("PyTorch is not available. Using mock generator.")
            generator = MockGenerator()
            return True
            
        device = "cuda" if torch.cuda.is_available() else "cpu"
        if device == "cpu":
            logger.warning("GPU not available. Using CPU, performance may be slow!")
        logger.info(f"Using device: {device}")
        
        try:
            # Cố gắng tải model theo cách khác, không sử dụng load_csm_1b
            from generator import Model, Generator
            from huggingface_hub import hf_hub_download
            
            try:
                # Trực tiếp khởi tạo mô hình từ pretrained
                model = Model.from_pretrained("sesame/csm-1b")
                model = model.to(device=device)
                generator = Generator(model)
                logger.info(f"Model loaded successfully on device: {device}")
            except Exception as inner_e:
                logger.error(f"Error loading model directly: {str(inner_e)}")
                # Nếu không thể tải trực tiếp, sử dụng generator giả
                logger.warning("Falling back to mock generator")
                generator = MockGenerator()
        except Exception as e:
            logger.error(f"Error loading actual model: {str(e)}")
            # Fall back to mock generator
            logger.warning("Falling back to mock generator")
            generator = MockGenerator()
        
        return True
    except Exception as e:
        logger.error(f"Could not initialize any generator: {str(e)}")
        return False

def generate_speech(text, speaker_id, max_audio_length_ms=10000, temperature=0.9, topk=50, context_texts=None, context_speakers=None):
    global generator
    
    if generator is None:
        if not initialize_model():
            return None, "Could not load model. Please try again later."
    
    try:
        # Process context if provided
        context_segments = []
        if context_texts and context_speakers:
            for ctx_text, ctx_speaker in zip(context_texts, context_speakers):
                if ctx_text and ctx_speaker is not None:
                    if TORCH_AVAILABLE:
                        audio_tensor = torch.zeros(0, dtype=torch.float32)
                    else:
                        audio_tensor = np.zeros(0, dtype=np.float32)
                    
                    context_segments.append(
                        Segment(text=ctx_text, speaker=int(ctx_speaker), audio=audio_tensor)
                    )
        
        # Generate audio from text
        audio = generator.generate(
            text=text,
            speaker=int(speaker_id),
            context=context_segments,
            max_audio_length_ms=float(max_audio_length_ms),
            temperature=float(temperature),
            topk=int(topk),
        )
        
        # Convert tensor to numpy array for Gradio
        if TORCH_AVAILABLE and isinstance(audio, torch.Tensor):
            audio_numpy = audio.cpu().numpy()
        else:
            audio_numpy = audio  # Already numpy from MockGenerator
            
        sample_rate = generator.sample_rate
        
        return (sample_rate, audio_numpy), None
    
    except Exception as e:
        logger.error(f"Error generating audio: {str(e)}")
        return None, f"Error generating audio: {str(e)}"

def clear_context():
    return [], []

def add_context(text, speaker_id, context_texts, context_speakers):
    if text and speaker_id is not None:
        context_texts.append(text)
        context_speakers.append(int(speaker_id))
    return context_texts, context_speakers

def update_context_display(texts, speakers):
    if not texts or not speakers:
        return []
    return [[text, speaker] for text, speaker in zip(texts, speakers)]

def create_demo():
    # Set up Gradio interface
    demo = gr.Blocks(title="CSM 1B Demo")
    
    with demo:
        gr.Markdown("# CSM 1B - Conversational Speech Model")
        gr.Markdown("Enter text to generate natural-sounding speech with the CSM 1B model")
        
        if not TORCH_AVAILABLE:
            gr.Markdown("⚠️ **WARNING: PyTorch is not available. Using a mock generator that produces silent audio.**")
        
        with gr.Row():
            with gr.Column(scale=2):
                text_input = gr.Textbox(
                    label="Text to convert to speech",
                    placeholder="Enter your text here...",
                    lines=3
                )
                speaker_id = gr.Slider(
                    label="Speaker ID",
                    minimum=0,
                    maximum=10,
                    step=1,
                    value=0
                )
                
                with gr.Accordion("Advanced Options", open=False):
                    max_length = gr.Slider(
                        label="Maximum length (milliseconds)",
                        minimum=1000,
                        maximum=30000,
                        step=1000,
                        value=10000
                    )
                    temp = gr.Slider(
                        label="Temperature",
                        minimum=0.1,
                        maximum=1.5,
                        step=0.1,
                        value=0.9
                    )
                    top_k = gr.Slider(
                        label="Top K",
                        minimum=10,
                        maximum=100,
                        step=10,
                        value=50
                    )
                
                with gr.Accordion("Conversation Context", open=False):
                    context_list = gr.State([])
                    context_speakers_list = gr.State([])
                    
                    with gr.Row():
                        context_text = gr.Textbox(label="Context text", lines=2)
                        context_speaker = gr.Slider(
                            label="Context speaker ID",
                            minimum=0,
                            maximum=10,
                            step=1,
                            value=0
                        )
                    
                    with gr.Row():
                        add_ctx_btn = gr.Button("Add Context")
                        clear_ctx_btn = gr.Button("Clear All Context")
                    
                    context_display = gr.Dataframe(
                        headers=["Text", "Speaker ID"],
                        label="Current Context",
                        interactive=False
                    )
                
                generate_btn = gr.Button("Generate Audio", variant="primary")
            
            with gr.Column(scale=1):
                audio_output = gr.Audio(label="Generated Audio", type="numpy")
                error_output = gr.Textbox(label="Error Message", visible=False)
        
        # Connect events
        generate_btn.click(
            fn=generate_speech,
            inputs=[
                text_input,
                speaker_id,
                max_length,
                temp,
                top_k,
                context_list,
                context_speakers_list
            ],
            outputs=[audio_output, error_output]
        )
        
        add_ctx_btn.click(
            fn=add_context,
            inputs=[
                context_text,
                context_speaker,
                context_list,
                context_speakers_list
            ],
            outputs=[context_list, context_speakers_list]
        )
        
        clear_ctx_btn.click(
            fn=clear_context,
            inputs=[],
            outputs=[context_list, context_speakers_list]
        )
        
        # Update context display
        context_list.change(
            fn=update_context_display,
            inputs=[context_list, context_speakers_list],
            outputs=[context_display]
        )
        
        context_speakers_list.change(
            fn=update_context_display,
            inputs=[context_list, context_speakers_list],
            outputs=[context_display]
        )
        
        gr.Markdown("""
        ## About this demo
        
        This is a demonstration of Sesame AI's CSM-1B Conversational Speech Model.
        
        * The model can generate natural sounding speech from text input
        * You can choose different speaker identities by changing the Speaker ID
        * Add conversation context to make responses sound more natural in a dialogue
        
        [View model on Hugging Face](https://huggingface.co/sesame/csm-1b)
        """)
    
    return demo

# Initialize model when page loads
initialize_model()

# Create and launch the demo
demo = create_demo()
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)