Spaces:
Sleeping
Sleeping
File size: 10,441 Bytes
69a5801 e0af3c6 69a5801 e0af3c6 69a5801 e0af3c6 2f09003 e0af3c6 69a5801 e0af3c6 2f09003 e0af3c6 69a5801 e0af3c6 69a5801 e0af3c6 69a5801 e0af3c6 69a5801 e0af3c6 69a5801 e0af3c6 69a5801 e0af3c6 69a5801 e0af3c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
import base64
import io
import logging
from typing import List
import os
import sys
import numpy as np
import gradio as gr
# Thêm class mô phỏng để giải quyết lỗi import
class MockGenerator:
def __init__(self):
self.sample_rate = 24000
logging.info("Created mock generator with sample rate 24000")
def generate(self, text, speaker, context=None, max_audio_length_ms=10000, temperature=0.9, topk=50):
# Tạo âm thanh giả - chỉ là silence với độ dài tỷ lệ với text
duration_seconds = min(len(text) * 0.1, max_audio_length_ms / 1000)
samples = int(duration_seconds * self.sample_rate)
logging.info(f"Generating mock audio with {samples} samples")
return np.zeros(samples, dtype=np.float32)
# Import thực tế chỉ khi cần
try:
import torch
import torchaudio
# Chỉ import các thành phần cần thiết
from generator import Segment
TORCH_AVAILABLE = True
except ImportError:
TORCH_AVAILABLE = False
# Tạo class Segment giả
class Segment:
def __init__(self, speaker, text, audio=None):
self.speaker = speaker
self.text = text
self.audio = audio if audio is not None else np.zeros(0, dtype=np.float32)
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
generator = None
def initialize_model():
global generator
logger.info("Loading CSM 1B model...")
try:
if not TORCH_AVAILABLE:
logger.warning("PyTorch is not available. Using mock generator.")
generator = MockGenerator()
return True
device = "cuda" if torch.cuda.is_available() else "cpu"
if device == "cpu":
logger.warning("GPU not available. Using CPU, performance may be slow!")
logger.info(f"Using device: {device}")
try:
# Cố gắng tải model theo cách khác, không sử dụng load_csm_1b
from generator import Model, Generator
from huggingface_hub import hf_hub_download
try:
# Trực tiếp khởi tạo mô hình từ pretrained
model = Model.from_pretrained("sesame/csm-1b")
model = model.to(device=device)
generator = Generator(model)
logger.info(f"Model loaded successfully on device: {device}")
except Exception as inner_e:
logger.error(f"Error loading model directly: {str(inner_e)}")
# Nếu không thể tải trực tiếp, sử dụng generator giả
logger.warning("Falling back to mock generator")
generator = MockGenerator()
except Exception as e:
logger.error(f"Error loading actual model: {str(e)}")
# Fall back to mock generator
logger.warning("Falling back to mock generator")
generator = MockGenerator()
return True
except Exception as e:
logger.error(f"Could not initialize any generator: {str(e)}")
return False
def generate_speech(text, speaker_id, max_audio_length_ms=10000, temperature=0.9, topk=50, context_texts=None, context_speakers=None):
global generator
if generator is None:
if not initialize_model():
return None, "Could not load model. Please try again later."
try:
# Process context if provided
context_segments = []
if context_texts and context_speakers:
for ctx_text, ctx_speaker in zip(context_texts, context_speakers):
if ctx_text and ctx_speaker is not None:
if TORCH_AVAILABLE:
audio_tensor = torch.zeros(0, dtype=torch.float32)
else:
audio_tensor = np.zeros(0, dtype=np.float32)
context_segments.append(
Segment(text=ctx_text, speaker=int(ctx_speaker), audio=audio_tensor)
)
# Generate audio from text
audio = generator.generate(
text=text,
speaker=int(speaker_id),
context=context_segments,
max_audio_length_ms=float(max_audio_length_ms),
temperature=float(temperature),
topk=int(topk),
)
# Convert tensor to numpy array for Gradio
if TORCH_AVAILABLE and isinstance(audio, torch.Tensor):
audio_numpy = audio.cpu().numpy()
else:
audio_numpy = audio # Already numpy from MockGenerator
sample_rate = generator.sample_rate
return (sample_rate, audio_numpy), None
except Exception as e:
logger.error(f"Error generating audio: {str(e)}")
return None, f"Error generating audio: {str(e)}"
def clear_context():
return [], []
def add_context(text, speaker_id, context_texts, context_speakers):
if text and speaker_id is not None:
context_texts.append(text)
context_speakers.append(int(speaker_id))
return context_texts, context_speakers
def update_context_display(texts, speakers):
if not texts or not speakers:
return []
return [[text, speaker] for text, speaker in zip(texts, speakers)]
def create_demo():
# Set up Gradio interface
demo = gr.Blocks(title="CSM 1B Demo")
with demo:
gr.Markdown("# CSM 1B - Conversational Speech Model")
gr.Markdown("Enter text to generate natural-sounding speech with the CSM 1B model")
if not TORCH_AVAILABLE:
gr.Markdown("⚠️ **WARNING: PyTorch is not available. Using a mock generator that produces silent audio.**")
with gr.Row():
with gr.Column(scale=2):
text_input = gr.Textbox(
label="Text to convert to speech",
placeholder="Enter your text here...",
lines=3
)
speaker_id = gr.Slider(
label="Speaker ID",
minimum=0,
maximum=10,
step=1,
value=0
)
with gr.Accordion("Advanced Options", open=False):
max_length = gr.Slider(
label="Maximum length (milliseconds)",
minimum=1000,
maximum=30000,
step=1000,
value=10000
)
temp = gr.Slider(
label="Temperature",
minimum=0.1,
maximum=1.5,
step=0.1,
value=0.9
)
top_k = gr.Slider(
label="Top K",
minimum=10,
maximum=100,
step=10,
value=50
)
with gr.Accordion("Conversation Context", open=False):
context_list = gr.State([])
context_speakers_list = gr.State([])
with gr.Row():
context_text = gr.Textbox(label="Context text", lines=2)
context_speaker = gr.Slider(
label="Context speaker ID",
minimum=0,
maximum=10,
step=1,
value=0
)
with gr.Row():
add_ctx_btn = gr.Button("Add Context")
clear_ctx_btn = gr.Button("Clear All Context")
context_display = gr.Dataframe(
headers=["Text", "Speaker ID"],
label="Current Context",
interactive=False
)
generate_btn = gr.Button("Generate Audio", variant="primary")
with gr.Column(scale=1):
audio_output = gr.Audio(label="Generated Audio", type="numpy")
error_output = gr.Textbox(label="Error Message", visible=False)
# Connect events
generate_btn.click(
fn=generate_speech,
inputs=[
text_input,
speaker_id,
max_length,
temp,
top_k,
context_list,
context_speakers_list
],
outputs=[audio_output, error_output]
)
add_ctx_btn.click(
fn=add_context,
inputs=[
context_text,
context_speaker,
context_list,
context_speakers_list
],
outputs=[context_list, context_speakers_list]
)
clear_ctx_btn.click(
fn=clear_context,
inputs=[],
outputs=[context_list, context_speakers_list]
)
# Update context display
context_list.change(
fn=update_context_display,
inputs=[context_list, context_speakers_list],
outputs=[context_display]
)
context_speakers_list.change(
fn=update_context_display,
inputs=[context_list, context_speakers_list],
outputs=[context_display]
)
gr.Markdown("""
## About this demo
This is a demonstration of Sesame AI's CSM-1B Conversational Speech Model.
* The model can generate natural sounding speech from text input
* You can choose different speaker identities by changing the Speaker ID
* Add conversation context to make responses sound more natural in a dialogue
[View model on Hugging Face](https://huggingface.co/sesame/csm-1b)
""")
return demo
# Initialize model when page loads
initialize_model()
# Create and launch the demo
demo = create_demo()
demo.launch(server_name="0.0.0.0", server_port=7860, share=True) |