Spaces:
Running
Running
File size: 6,344 Bytes
d804881 9ab32d7 d51ffe7 d804881 9ab32d7 d51ffe7 1470bc9 d51ffe7 9ab32d7 d804881 9ab32d7 d804881 9ab32d7 d51ffe7 9ab32d7 d51ffe7 9ab32d7 d51ffe7 1470bc9 d51ffe7 1470bc9 9ab32d7 1470bc9 9ab32d7 1470bc9 9ab32d7 d51ffe7 6e31dbd d51ffe7 6e31dbd d51ffe7 6e31dbd d51ffe7 9ab32d7 d51ffe7 9ab32d7 1470bc9 9ab32d7 1470bc9 d51ffe7 1470bc9 d51ffe7 9ab32d7 d804881 6e31dbd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
import gradio as gr
from aip_trainer import app_logger
from aip_trainer.lambdas import lambdaGetSample, lambdaSpeechToScore, lambdaTTS
js = """
function updateCssText(text, letters) {
let wordsArr = text.split(" ")
let lettersWordsArr = letters.split(" ")
let speechOutputContainer = document.querySelector('#speech-output');
speechOutputContainer.textContent = ""
for (let idx in wordsArr) {
let word = wordsArr[idx]
let letterIsCorrect = lettersWordsArr[idx]
for (let idx1 in word) {
let letterCorrect = letterIsCorrect[idx1] == "1"
let containerLetter = document.createElement("span")
containerLetter.style.color = letterCorrect ? 'green' : "red"
containerLetter.innerText = word[idx1];
speechOutputContainer.appendChild(containerLetter)
}
let containerSpace = document.createElement("span")
containerSpace.textContent = " "
speechOutputContainer.appendChild(containerSpace)
}
}
"""
def clear():
return None
def clear2():
return None, None
with gr.Blocks() as gradio_app:
app_logger.info("start gradio app building...")
gr.Markdown(
"""
# AI Pronunciation Trainer
See [my fork](https://github.com/trincadev/ai-pronunciation-trainer) of [AI Pronunciation Trainer](https://github.com/Thiagohgl/ai-pronunciation-trainer) repositroy
for more details.
"""
)
with gr.Row():
with gr.Column(scale=4, min_width=300):
with gr.Row():
with gr.Column(scale=2, min_width=80):
language = gr.Radio(["de", "en"], label="Language", value="en")
with gr.Column(scale=5, min_width=160):
difficulty = gr.Radio(
label="Difficulty",
value=0,
choices=[
("random", 0),
("easy", 1),
("medium", 2),
("hard", 3),
],
)
with gr.Column(scale=1, min_width=100):
btn_random_phrase = gr.Button(value="Choose a random phrase")
with gr.Row():
with gr.Column(scale=7, min_width=300):
learner_transcription = gr.Textbox(
lines=3,
label="Learner Transcription",
value="Hi there, how are you?",
)
with gr.Row():
with gr.Column(scale=7, min_width=240):
audio_tts = gr.Audio(label="Audio TTS")
with gr.Column(scale=1, min_width=50):
btn_run_tts = gr.Button(value="Run TTS")
btn_clear_tts = gr.Button(value="Clear TTS")
btn_clear_tts.click(clear, inputs=[], outputs=[audio_tts])
with gr.Row():
audio_learner_recording_stt = gr.Audio(
label="Learner Recording",
sources=["microphone", "upload"],
type="filepath",
show_download_button=True,
)
with gr.Column(scale=4, min_width=320):
examples_text = gr.Examples(
examples=[
["Hi there, how are you?", "en", 1],
["Hallo, wie geht es dir?", "de", 1],
["Die König-Ludwig-Eiche ist ein Naturdenkmal im Staatsbad Brückenau.", "de", 2,],
["Rome is home to some of the most beautiful monuments in the world.", "en", 2],
["Some machine learning models are designed to understand and generate human-like text based on the input they receive.", "en", 3],
["Die König-Ludwig-Eiche ist ein Naturdenkmal im Staatsbad Brückenau, einem Ortsteil des drei Kilometer nordöstlich gelegenen Bad Brückenau im Landkreis Bad Kissingen in Bayern.", "de", 3],
],
inputs=[learner_transcription, language, difficulty],
)
transcripted_text = gr.Textbox(
lines=2, placeholder=None, label="Transcripted text", visible=False
)
letter_correctness = gr.Textbox(
lines=1,
placeholder=None,
label="Letters correctness",
visible=False,
)
pronunciation_accuracy = gr.Textbox(
lines=1, placeholder=None, label="Pronunciation accuracy %"
)
recording_ipa = gr.Textbox(
lines=1, placeholder=None, label="Learner phonetic transcription"
)
ideal_ipa = gr.Textbox(
lines=1, placeholder=None, label="Ideal phonetic transcription"
)
res = gr.Textbox(lines=1, placeholder=None, label="RES", visible=False)
html_output = gr.HTML(
label="Speech accuracy output",
elem_id="speech-output",
show_label=True,
visible=True,
render=True,
value=" - ",
elem_classes="speech-output",
)
with gr.Row():
btn = gr.Button(value="Recognize speech accuracy")
btn.click(
lambdaSpeechToScore.get_speech_to_score_tuple,
inputs=[learner_transcription, audio_learner_recording_stt, language],
outputs=[
transcripted_text,
letter_correctness,
pronunciation_accuracy,
recording_ipa,
ideal_ipa,
res,
],
)
btn_run_tts.click(
fn=lambdaTTS.get_tts,
inputs=[learner_transcription, language],
outputs=audio_tts,
)
btn_random_phrase.click(
lambdaGetSample.get_random_selection,
inputs=[language, difficulty],
outputs=[learner_transcription],
)
btn_random_phrase.click(
clear2,
inputs=[],
outputs=[audio_learner_recording_stt, audio_tts]
)
html_output.change(
None,
inputs=[transcripted_text, letter_correctness],
outputs=[html_output],
js=js,
)
if __name__ == "__main__":
gradio_app.launch()
|