Spaces:
Running
Running
File size: 19,747 Bytes
4cafb0a 85b7206 4cafb0a 85b7206 4cafb0a 85b7206 4cafb0a 85b7206 4cafb0a 85b7206 4cafb0a 85b7206 4cafb0a 85b7206 4cafb0a d1b2b5d 4cafb0a d1b2b5d 4cafb0a d1b2b5d 85b7206 d1b2b5d 4cafb0a d1b2b5d 4cafb0a 85b7206 4cafb0a d1b2b5d 85b7206 d1b2b5d 4cafb0a 85b7206 4cafb0a d1b2b5d 4cafb0a d1b2b5d 4cafb0a d1b2b5d 4cafb0a d1b2b5d 4cafb0a d1b2b5d 85b7206 d1b2b5d 85b7206 4cafb0a 85b7206 4cafb0a d1b2b5d 4cafb0a d1b2b5d 4cafb0a d1b2b5d 4cafb0a d1b2b5d 4cafb0a 85b7206 4cafb0a 85b7206 4cafb0a 85b7206 4cafb0a 85b7206 4cafb0a 85b7206 4cafb0a 85b7206 4cafb0a 85b7206 4cafb0a acfca85 4cafb0a 85b7206 4cafb0a 85b7206 4cafb0a 85b7206 4cafb0a 85b7206 4cafb0a 85b7206 4cafb0a 85b7206 4cafb0a d1b2b5d acfca85 d1b2b5d 4cafb0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
import unittest
import numpy as np
import torch
from torchaudio.transforms import Resample
## permit to import from parent directory also in
# import sys
# from pathlib import Path
# parent = Path(__file__).parent.parent
# sys.path.append(str(parent))
from lambdaSpeechToScore import audioread_load
import pronunciationTrainer
from constants import sample_rate_start, sample_rate_resample, app_logger
from tests import EVENTS_FOLDER, set_seed
import tests.utilities as utilities
phrases = {
"de": {
"real": "Hallo, wie geht es dir?",
"transcribed": ' Hallo, wie geht es dir?',
"partial": 'hallo wie geht ',
"incorrect": 'hail wi git es dir'
},
"en": {
"real": "Hi there, how are you?",
"transcribed": ' Hi there, how are you?',
"partial": 'i there how',
"incorrect": "I here how re youth"
}
}
trainer_SST_lambda_de = pronunciationTrainer.getTrainer("de")
trainer_SST_lambda_en = pronunciationTrainer.getTrainer("en")
signal_de, _ = audioread_load(str(EVENTS_FOLDER / "test_de_easy.wav"))
signal_en, _ = audioread_load(str(EVENTS_FOLDER / "test_en_easy.wav"))
transform = Resample(orig_freq=sample_rate_start, new_freq=sample_rate_resample)
class TestScore(unittest.TestCase):
def setUp(self):
import platform, os
if platform.system() == "Windows" or platform.system() == "Win32":
os.environ["PYTHONUTF8"] = "1"
def test_getTrainer(self):
self.assertIsInstance(trainer_SST_lambda_de, pronunciationTrainer.PronunciationTrainer)
self.assertIsInstance(trainer_SST_lambda_en, pronunciationTrainer.PronunciationTrainer)
def test_getTrainer_language_not_implemented(self):
with self.assertRaises(ValueError):
try:
pronunciationTrainer.getTrainer("it")
except ValueError as ve:
assert str(ve) == "Language 'it' not implemented"
raise ve
def test_exact_transcription_de(self):
set_seed()
phrase_real = phrases["de"]["real"]
real_and_transcribed_words, real_and_transcribed_words_ipa, mapped_words_indices = trainer_SST_lambda_de.matchSampleAndRecordedWords(phrase_real, phrase_real)
self.assertEqual(real_and_transcribed_words_ipa, [('haloː,', 'haloː,'), ('viː', 'viː'), ('ɡeːt', 'ɡeːt'), ('ɛːs', 'ɛːs'), ('diːr?', 'diːr?')])
self.assertEqual(mapped_words_indices, [0, 1, 2, 3, 4])
pronunciation_accuracy, current_words_pronunciation_accuracy = trainer_SST_lambda_de.getPronunciationAccuracy(real_and_transcribed_words)
self.assertEqual(int(pronunciation_accuracy), 100)
self.assertEqual(current_words_pronunciation_accuracy, [100, 100, 100, 100, 100])
def test_transcription_de(self):
set_seed()
phrase_real = phrases["de"]["real"]
phrase_transcribed = phrases["de"]["transcribed"]
real_and_transcribed_words, real_and_transcribed_words_ipa, mapped_words_indices = trainer_SST_lambda_de.matchSampleAndRecordedWords(phrase_real, phrase_transcribed)
self.assertEqual(real_and_transcribed_words_ipa, [('haloː,', 'haloː,'), ('viː', 'viː'), ('ɡeːt', 'ɡeːt'), ('ɛːs', 'ɛːs'), ('diːr?', 'diːr?')])
self.assertEqual(mapped_words_indices, [0, 1, 2, 3, 4])
pronunciation_accuracy, current_words_pronunciation_accuracy= trainer_SST_lambda_de.getPronunciationAccuracy(real_and_transcribed_words)
self.assertEqual(int(pronunciation_accuracy), 100)
self.assertEqual(current_words_pronunciation_accuracy, [100, 100, 100, 100, 100])
def test_partial_transcription_de(self):
set_seed()
self.maxDiff = None
phrase_real = phrases["de"]["real"]
phrase_partial = phrases["de"]["partial"]
real_and_transcribed_words, real_and_transcribed_words_ipa, mapped_words_indices = trainer_SST_lambda_de.matchSampleAndRecordedWords(phrase_real, phrase_partial)
pronunciation_accuracy, current_words_pronunciation_accuracy= trainer_SST_lambda_de.getPronunciationAccuracy(real_and_transcribed_words)
self.assertEqual(real_and_transcribed_words_ipa, [('haloː,', 'haloː'), ('viː', 'viː'), ('ɡeːt', 'ɡeːt'), ('ɛːs', '-'), ('diːr?', '-')] )
self.assertEqual(mapped_words_indices, [0, 1, 2, -1, -1])
self.assertEqual(int(pronunciation_accuracy), 71)
self.assertEqual(current_words_pronunciation_accuracy, [100.0, 100.0, 100.0, 0.0, 0.0])
def test_incorrect_transcription_with_correct_words_de(self):
set_seed()
phrase_real = phrases["de"]["real"]
phrase_transcribed_incorrect = phrases["de"]["incorrect"]
real_and_transcribed_words, real_and_transcribed_words_ipa, mapped_words_indices = trainer_SST_lambda_de.matchSampleAndRecordedWords(phrase_real, phrase_transcribed_incorrect)
self.assertEqual(real_and_transcribed_words_ipa, [('haloː,', 'haɪ̯l'), ('viː', 'viː'), ('ɡeːt', 'ɡiːt'), ('ɛːs', 'ɛːs'), ('diːr?', 'diːɐ̯')])
self.assertEqual(mapped_words_indices, [0, 1, 2, 3, 4])
pronunciation_accuracy, current_words_pronunciation_accuracy= trainer_SST_lambda_de.getPronunciationAccuracy(real_and_transcribed_words)
self.assertEqual(int(pronunciation_accuracy), 71)
for accuracy, expected_accuracy in zip(current_words_pronunciation_accuracy, [60.0, 66.666666, 50.0, 100.0, 100.0]):
self.assertAlmostEqual(accuracy, expected_accuracy, places=2)
def test_exact_transcription_en(self):
set_seed()
phrase_real = phrases["en"]["real"]
real_and_transcribed_words, real_and_transcribed_words_ipa, mapped_words_indices = trainer_SST_lambda_en.matchSampleAndRecordedWords(phrase_real, phrase_real)
self.assertEqual(real_and_transcribed_words_ipa, [('haɪ', 'haɪ'), ('ðɛr,', 'ðɛr,'), ('haʊ', 'haʊ'), ('ər', 'ər'), ('ju?', 'ju?')])
self.assertEqual(mapped_words_indices, [0, 1, 2, 3, 4])
pronunciation_accuracy, current_words_pronunciation_accuracy= trainer_SST_lambda_en.getPronunciationAccuracy(real_and_transcribed_words)
self.assertEqual(int(pronunciation_accuracy), 100)
self.assertEqual(current_words_pronunciation_accuracy, [100, 100, 100, 100, 100])
def test_transcription_en(self):
set_seed()
phrase_real = phrases["en"]["real"]
phrase_transcribed = phrases["en"]["transcribed"]
real_and_transcribed_words, real_and_transcribed_words_ipa, mapped_words_indices = trainer_SST_lambda_en.matchSampleAndRecordedWords(phrase_real, phrase_transcribed)
self.assertEqual(real_and_transcribed_words_ipa, [('haɪ', 'haɪ'), ('ðɛr,', 'ðɛr,'), ('haʊ', 'haʊ'), ('ər', 'ər'), ('ju?', 'ju?')])
self.assertEqual(mapped_words_indices, [0, 1, 2, 3, 4])
pronunciation_accuracy, current_words_pronunciation_accuracy= trainer_SST_lambda_en.getPronunciationAccuracy(real_and_transcribed_words)
self.assertEqual(int(pronunciation_accuracy), 100)
self.assertEqual(current_words_pronunciation_accuracy, [100.0, 100.0, 100.0, 100.0, 100.0])
def test_partial_transcription_en(self):
set_seed()
self.maxDiff = None
phrase_real = phrases["en"]["real"]
phrase_partial = phrases["en"]["partial"]
real_and_transcribed_words, real_and_transcribed_words_ipa, mapped_words_indices = trainer_SST_lambda_en.matchSampleAndRecordedWords(phrase_real, phrase_partial)
self.assertEqual(real_and_transcribed_words_ipa, [('haɪ', 'aɪ'), ('ðɛr,', 'ðɛr'), ('haʊ', 'haʊ'), ('ər', ''), ('ju?', '')])
self.assertEqual(mapped_words_indices, [0, 1, 2, -1, -1])
pronunciation_accuracy, current_words_pronunciation_accuracy= trainer_SST_lambda_en.getPronunciationAccuracy(real_and_transcribed_words)
self.assertEqual(int(pronunciation_accuracy), 56)
self.assertEqual(current_words_pronunciation_accuracy, [50.0, 100.0, 100.0, 0.0, 0.0])
def test_incorrect_transcription_with_correct_words_en(self):
set_seed()
phrase_real = phrases["en"]["real"]
phrase_transcribed_incorrect = phrases["en"]["incorrect"]
real_and_transcribed_words, real_and_transcribed_words_ipa, mapped_words_indices = trainer_SST_lambda_en.matchSampleAndRecordedWords(phrase_real, phrase_transcribed_incorrect)
self.assertEqual(real_and_transcribed_words_ipa, [('haɪ', 'aɪ'), ('ðɛr,', 'hir'), ('haʊ', 'haʊ'), ('ər', 'ri'), ('ju?', 'juθ')])
self.assertEqual(mapped_words_indices, [0, 1, 2, 3, 4])
pronunciation_accuracy, current_words_pronunciation_accuracy= trainer_SST_lambda_en.getPronunciationAccuracy(real_and_transcribed_words)
self.assertEqual(int(pronunciation_accuracy), 69)
for accuracy, expected_accuracy in zip(current_words_pronunciation_accuracy, [50.0, 80.0, 100.0, 66.666666, 33.333333]):
self.assertAlmostEqual(accuracy, expected_accuracy, places=2)
def test_empty_phrase_real(self):
set_seed()
phrase_transcribed = phrases["de"]["transcribed"]
with self.assertRaises(ValueError):
try:
trainer_SST_lambda_de.matchSampleAndRecordedWords(None, phrase_transcribed)
except ValueError as ve:
assert str(ve) == "Real text is None, but should be a string."
raise ve
def test_processAudioForGivenText_getTranscriptAndWordsLocations_de(self):
set_seed()
self.maxDiff = None
phrase_real = phrases["de"]["real"]
signal_de_shape = signal_de.shape[0]
signal_transformed = transform(torch.Tensor(signal_de)).unsqueeze(0)
result = trainer_SST_lambda_de.processAudioForGivenText(signal_transformed, phrase_real)
expected_result = {
'recording_transcript': ' Hallo, wie geht es dir?',
'real_and_transcribed_words': [('Hallo,', 'Hallo,'), ('wie', 'wie'), ('geht', 'geht'), ('es', 'es'), ('dir?', 'dir?')],
'recording_ipa': ' haloː, viː ɡeːt ɛːs diːr?',
'start_time': '0.0 0.49 0.59 0.77 0.99',
'end_time': '0.37 0.69 0.87 1.09 1.31',
'real_and_transcribed_words_ipa': [('haloː,', 'haloː,'), ('viː', 'viː'), ('ɡeːt', 'ɡeːt'), ('ɛːs', 'ɛːs'), ('diːr?', 'diːr?')],
'pronunciation_accuracy': 100.0,
'pronunciation_categories': [0, 0, 0, 0, 0]
}
self.assertDictEqual(result, expected_result)
transcript, word_locations = trainer_SST_lambda_de.getTranscriptAndWordsLocations(signal_de_shape)
assert transcript == phrases["de"]["transcribed"]
assert word_locations == [
(0, 5920), (7840, 11040), (9440, 13920), (12320, 17440), (15840, 20960),
(0, 5920), (7840, 11040), (9440, 13920), (12320, 17440), (15840, 20960)
]
def test_processAudioForGivenText_de(self):
set_seed()
self.maxDiff = None
phrase_real = phrases["de"]["real"]
signal_transformed = transform(torch.Tensor(signal_de)).unsqueeze(0)
expected_result = {
'recording_transcript': ' Hallo, wie geht es dir?',
'real_and_transcribed_words': [('Hallo,', 'Hallo,'), ('wie', 'wie'), ('geht', 'geht'), ('es', 'es'), ('dir?', 'dir?')],
'recording_ipa': ' haloː, viː ɡeːt ɛːs diːr?',
'start_time': '0.0 0.49 0.59 0.77 0.99',
'end_time': '0.37 0.69 0.87 1.09 1.31',
'real_and_transcribed_words_ipa': [('haloː,', 'haloː,'), ('viː', 'viː'), ('ɡeːt', 'ɡeːt'), ('ɛːs', 'ɛːs'), ('diːr?', 'diːr?')],
'pronunciation_accuracy': 100.0,
'pronunciation_categories': [0, 0, 0, 0, 0]
}
result = trainer_SST_lambda_de.processAudioForGivenText(signal_transformed, phrase_real)
self.assertDictEqual(result, expected_result)
def test_removePunctuation_de(self):
word = "glück,"
cleaned_word = trainer_SST_lambda_de.removePunctuation(word)
self.assertEqual(cleaned_word, "glück")
word = "glück,\n\rhallo..."
cleaned_word = trainer_SST_lambda_de.removePunctuation(word)
self.assertEqual(cleaned_word, "glück\n\rhallo")
def test_getWordsPronunciationCategory_de(self):
accuracies = [x for x in range(-121, 121, 10)] + [np.inf, -np.inf, np.nan, 1.5, -1.5]
expected_categories = [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2]
categories = trainer_SST_lambda_de.getWordsPronunciationCategory(accuracies)
self.assertEqual(categories, expected_categories)
def test_preprocessAudio_de(self):
output_hash = utilities.hash_calculate(signal_de, is_file=False)
assert output_hash == b'D9pMFzYL1BSPPg89ZCQE61xzb7QICXolYtC9EJRpvS0='
signal_transformed = transform(torch.Tensor(signal_de)).unsqueeze(0)
preprocessed_audio = trainer_SST_lambda_de.preprocessAudio(signal_transformed)
self.assertIsInstance(preprocessed_audio, torch.Tensor)
self.assertEqual(preprocessed_audio.shape, (1, 23400))
output_hash = utilities.hash_calculate(preprocessed_audio.numpy(), is_file=False)
assert output_hash == b'Ri/1rmgYmRSWaAw/Y3PoLEu1woiczhSUdUCbaMf++EM='
def test_preprocessAudioStandalone_de(self):
output_hash = utilities.hash_calculate(signal_de, is_file=False)
assert output_hash == b'D9pMFzYL1BSPPg89ZCQE61xzb7QICXolYtC9EJRpvS0='
signal_transformed = transform(torch.Tensor(signal_de)).unsqueeze(0)
preprocessed_audio = pronunciationTrainer.preprocessAudioStandalone(signal_transformed)
self.assertIsInstance(preprocessed_audio, torch.Tensor)
self.assertEqual(preprocessed_audio.shape, (1, 23400))
output_hash = utilities.hash_calculate(preprocessed_audio.numpy(), is_file=False)
assert output_hash == b'Ri/1rmgYmRSWaAw/Y3PoLEu1woiczhSUdUCbaMf++EM='
def test_processAudioForGivenText_getTranscriptAndWordsLocations_en(self):
set_seed()
self.maxDiff = None
phrase_real = phrases["en"]["real"]
signal_en_shape = signal_en.shape[0]
signal_transformed = transform(torch.Tensor(signal_en)).unsqueeze(0)
result = trainer_SST_lambda_en.processAudioForGivenText(signal_transformed, phrase_real)
expected_result = {
'recording_transcript': ' Hi there, how are you?',
'real_and_transcribed_words': [('Hi', 'Hi'), ('there,', 'there,'), ('how', 'how'), ('are', 'are'), ('you?', 'you?')],
'recording_ipa': 'haɪ ðɛr, haʊ ər ju?',
'start_time': '0.0 0.09 0.41 0.53 0.65',
'end_time': '0.19 0.35 0.63 0.75 0.91',
'real_and_transcribed_words_ipa': [('haɪ', 'haɪ'), ('ðɛr,', 'ðɛr,'), ('haʊ', 'haʊ'), ('ər', 'ər'), ('ju?', 'ju?')],
'pronunciation_accuracy': 100.0,
'pronunciation_categories': [0, 0, 0, 0, 0]
}
self.assertDictEqual(result, expected_result)
transcript, word_locations = trainer_SST_lambda_en.getTranscriptAndWordsLocations(signal_en_shape)
assert transcript == phrases["en"]["transcribed"]
assert word_locations == [
(0, 3040), (1440, 5600), (6560, 10080), (8480, 12000), (10400, 14560),
(0, 3040), (1440, 5600), (6560, 10080), (8480, 12000), (10400, 14560)
]
def test_processAudioForGivenText_en(self):
set_seed()
self.maxDiff = None
phrase_real = phrases["en"]["real"]
signal_transformed = transform(torch.Tensor(signal_en)).unsqueeze(0)
expected_result = {
'recording_transcript': ' Hi there, how are you?',
'real_and_transcribed_words': [('Hi', 'Hi'), ('there,', 'there,'), ('how', 'how'), ('are', 'are'), ('you?', 'you?')],
'recording_ipa': 'haɪ ðɛr, haʊ ər ju?',
'start_time': '0.0 0.09 0.41 0.53 0.65',
'end_time': '0.19 0.35 0.63 0.75 0.91',
'real_and_transcribed_words_ipa': [('haɪ', 'haɪ'), ('ðɛr,', 'ðɛr,'), ('haʊ', 'haʊ'), ('ər', 'ər'), ('ju?', 'ju?')],
'pronunciation_accuracy': 100.0,
'pronunciation_categories': [0, 0, 0, 0, 0],
}
result = trainer_SST_lambda_en.processAudioForGivenText(signal_transformed, phrase_real)
self.assertDictEqual(result, expected_result)
def test_getPronunciationCategoryFromAccuracy_en(self):
accuracies = [x for x in range(-121, 121, 10)] + [np.inf, -np.inf, np.nan, 1.5, -1.5]
expected_categories = [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2]
all_categories = []
for accuracy in accuracies:
category = trainer_SST_lambda_en.getPronunciationCategoryFromAccuracy(accuracy)
all_categories.append(category)
self.assertEqual(all_categories, expected_categories)
def test_matchSampleAndRecordedWords(self):
set_seed()
phrase_real = phrases["de"]["real"]
phrase_transcribed = phrases["de"]["transcribed"]
real_and_transcribed_words, real_words, transcribed_words = trainer_SST_lambda_de.matchSampleAndRecordedWords(phrase_real, phrase_transcribed)
self.assertIsInstance(real_and_transcribed_words, list)
self.assertIsInstance(real_words, list)
self.assertIsInstance(transcribed_words, list)
self.assertEqual(len(real_and_transcribed_words), len(real_words))
self.assertEqual(len(real_and_transcribed_words), len(transcribed_words))
def test_removePunctuation_en(self):
word = "hello,"
cleaned_word = trainer_SST_lambda_en.removePunctuation(word)
self.assertEqual(cleaned_word, "hello")
word = "hello,\n\rworld..."
cleaned_word = trainer_SST_lambda_en.removePunctuation(word)
self.assertEqual(cleaned_word, "hello\n\rworld")
def test_getWordsPronunciationCategory_en(self):
accuracies = [x for x in range(-121, 121, 10)] + [np.inf, -np.inf, np.nan, 1.5, -1.5]
expected_categories = [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2]
categories = trainer_SST_lambda_en.getWordsPronunciationCategory(accuracies)
self.assertEqual(categories, expected_categories)
def test_preprocessAudio_en(self):
output_hash = utilities.hash_calculate(signal_en, is_file=False)
assert output_hash == b'zBAV/y7mecyPHLGiitHRP9vK7oU9hnYvyuatU0PQfts='
signal_transformed = transform(torch.Tensor(signal_en)).unsqueeze(0)
preprocessed_audio = trainer_SST_lambda_en.preprocessAudio(signal_transformed)
self.assertIsInstance(preprocessed_audio, torch.Tensor)
self.assertEqual(preprocessed_audio.shape, (1, 16800))
output_hash = utilities.hash_calculate(preprocessed_audio.numpy(), is_file=False)
assert output_hash == b'KsyH1MXIc+5e5B6CcijhitsGPUDRJjrJU2qg8bQi600='
def test_preprocessAudioStandalone_en(self):
output_hash = utilities.hash_calculate(signal_en, is_file=False)
assert output_hash == b'zBAV/y7mecyPHLGiitHRP9vK7oU9hnYvyuatU0PQfts='
signal_transformed = transform(torch.Tensor(signal_en)).unsqueeze(0)
preprocessed_audio = pronunciationTrainer.preprocessAudioStandalone(signal_transformed)
self.assertIsInstance(preprocessed_audio, torch.Tensor)
self.assertEqual(preprocessed_audio.shape, (1, 16800))
output_hash = utilities.hash_calculate(preprocessed_audio.numpy(), is_file=False)
assert output_hash == b'KsyH1MXIc+5e5B6CcijhitsGPUDRJjrJU2qg8bQi600='
if __name__ == '__main__':
unittest.main()
|