import unittest import numpy as np import torch from torchaudio.transforms import Resample ## permit to import from parent directory also in # import sys # from pathlib import Path # parent = Path(__file__).parent.parent # sys.path.append(str(parent)) from lambdaSpeechToScore import audioread_load import pronunciationTrainer from constants import sample_rate_start, sample_rate_resample, app_logger from tests import EVENTS_FOLDER, set_seed import tests.utilities as utilities phrases = { "de": { "real": "Hallo, wie geht es dir?", "transcribed": ' Hallo, wie geht es dir?', "partial": 'hallo wie geht ', "incorrect": 'hail wi git es dir' }, "en": { "real": "Hi there, how are you?", "transcribed": ' Hi there, how are you?', "partial": 'i there how', "incorrect": "I here how re youth" } } trainer_SST_lambda_de = pronunciationTrainer.getTrainer("de") trainer_SST_lambda_en = pronunciationTrainer.getTrainer("en") signal_de, _ = audioread_load(str(EVENTS_FOLDER / "test_de_easy.wav")) signal_en, _ = audioread_load(str(EVENTS_FOLDER / "test_en_easy.wav")) transform = Resample(orig_freq=sample_rate_start, new_freq=sample_rate_resample) class TestScore(unittest.TestCase): def setUp(self): import platform, os if platform.system() == "Windows" or platform.system() == "Win32": os.environ["PYTHONUTF8"] = "1" def test_getTrainer(self): self.assertIsInstance(trainer_SST_lambda_de, pronunciationTrainer.PronunciationTrainer) self.assertIsInstance(trainer_SST_lambda_en, pronunciationTrainer.PronunciationTrainer) def test_getTrainer_language_not_implemented(self): with self.assertRaises(ValueError): try: pronunciationTrainer.getTrainer("it") except ValueError as ve: assert str(ve) == "Language 'it' not implemented" raise ve def test_exact_transcription_de(self): set_seed() phrase_real = phrases["de"]["real"] real_and_transcribed_words, real_and_transcribed_words_ipa, mapped_words_indices = trainer_SST_lambda_de.matchSampleAndRecordedWords(phrase_real, phrase_real) self.assertEqual(real_and_transcribed_words_ipa, [('haloː,', 'haloː,'), ('viː', 'viː'), ('ɡeːt', 'ɡeːt'), ('ɛːs', 'ɛːs'), ('diːr?', 'diːr?')]) self.assertEqual(mapped_words_indices, [0, 1, 2, 3, 4]) pronunciation_accuracy, current_words_pronunciation_accuracy = trainer_SST_lambda_de.getPronunciationAccuracy(real_and_transcribed_words) self.assertEqual(int(pronunciation_accuracy), 100) self.assertEqual(current_words_pronunciation_accuracy, [100, 100, 100, 100, 100]) def test_transcription_de(self): set_seed() phrase_real = phrases["de"]["real"] phrase_transcribed = phrases["de"]["transcribed"] real_and_transcribed_words, real_and_transcribed_words_ipa, mapped_words_indices = trainer_SST_lambda_de.matchSampleAndRecordedWords(phrase_real, phrase_transcribed) self.assertEqual(real_and_transcribed_words_ipa, [('haloː,', 'haloː,'), ('viː', 'viː'), ('ɡeːt', 'ɡeːt'), ('ɛːs', 'ɛːs'), ('diːr?', 'diːr?')]) self.assertEqual(mapped_words_indices, [0, 1, 2, 3, 4]) pronunciation_accuracy, current_words_pronunciation_accuracy= trainer_SST_lambda_de.getPronunciationAccuracy(real_and_transcribed_words) self.assertEqual(int(pronunciation_accuracy), 100) self.assertEqual(current_words_pronunciation_accuracy, [100, 100, 100, 100, 100]) def test_partial_transcription_de(self): set_seed() self.maxDiff = None phrase_real = phrases["de"]["real"] phrase_partial = phrases["de"]["partial"] real_and_transcribed_words, real_and_transcribed_words_ipa, mapped_words_indices = trainer_SST_lambda_de.matchSampleAndRecordedWords(phrase_real, phrase_partial) pronunciation_accuracy, current_words_pronunciation_accuracy= trainer_SST_lambda_de.getPronunciationAccuracy(real_and_transcribed_words) self.assertEqual(real_and_transcribed_words_ipa, [('haloː,', 'haloː'), ('viː', 'viː'), ('ɡeːt', 'ɡeːt'), ('ɛːs', '-'), ('diːr?', '-')] ) self.assertEqual(mapped_words_indices, [0, 1, 2, -1, -1]) self.assertEqual(int(pronunciation_accuracy), 71) self.assertEqual(current_words_pronunciation_accuracy, [100.0, 100.0, 100.0, 0.0, 0.0]) def test_incorrect_transcription_with_correct_words_de(self): set_seed() phrase_real = phrases["de"]["real"] phrase_transcribed_incorrect = phrases["de"]["incorrect"] real_and_transcribed_words, real_and_transcribed_words_ipa, mapped_words_indices = trainer_SST_lambda_de.matchSampleAndRecordedWords(phrase_real, phrase_transcribed_incorrect) self.assertEqual(real_and_transcribed_words_ipa, [('haloː,', 'haɪ̯l'), ('viː', 'viː'), ('ɡeːt', 'ɡiːt'), ('ɛːs', 'ɛːs'), ('diːr?', 'diːɐ̯')]) self.assertEqual(mapped_words_indices, [0, 1, 2, 3, 4]) pronunciation_accuracy, current_words_pronunciation_accuracy= trainer_SST_lambda_de.getPronunciationAccuracy(real_and_transcribed_words) self.assertEqual(int(pronunciation_accuracy), 71) for accuracy, expected_accuracy in zip(current_words_pronunciation_accuracy, [60.0, 66.666666, 50.0, 100.0, 100.0]): self.assertAlmostEqual(accuracy, expected_accuracy, places=2) def test_exact_transcription_en(self): set_seed() phrase_real = phrases["en"]["real"] real_and_transcribed_words, real_and_transcribed_words_ipa, mapped_words_indices = trainer_SST_lambda_en.matchSampleAndRecordedWords(phrase_real, phrase_real) self.assertEqual(real_and_transcribed_words_ipa, [('haɪ', 'haɪ'), ('ðɛr,', 'ðɛr,'), ('haʊ', 'haʊ'), ('ər', 'ər'), ('ju?', 'ju?')]) self.assertEqual(mapped_words_indices, [0, 1, 2, 3, 4]) pronunciation_accuracy, current_words_pronunciation_accuracy= trainer_SST_lambda_en.getPronunciationAccuracy(real_and_transcribed_words) self.assertEqual(int(pronunciation_accuracy), 100) self.assertEqual(current_words_pronunciation_accuracy, [100, 100, 100, 100, 100]) def test_transcription_en(self): set_seed() phrase_real = phrases["en"]["real"] phrase_transcribed = phrases["en"]["transcribed"] real_and_transcribed_words, real_and_transcribed_words_ipa, mapped_words_indices = trainer_SST_lambda_en.matchSampleAndRecordedWords(phrase_real, phrase_transcribed) self.assertEqual(real_and_transcribed_words_ipa, [('haɪ', 'haɪ'), ('ðɛr,', 'ðɛr,'), ('haʊ', 'haʊ'), ('ər', 'ər'), ('ju?', 'ju?')]) self.assertEqual(mapped_words_indices, [0, 1, 2, 3, 4]) pronunciation_accuracy, current_words_pronunciation_accuracy= trainer_SST_lambda_en.getPronunciationAccuracy(real_and_transcribed_words) self.assertEqual(int(pronunciation_accuracy), 100) self.assertEqual(current_words_pronunciation_accuracy, [100.0, 100.0, 100.0, 100.0, 100.0]) def test_partial_transcription_en(self): set_seed() self.maxDiff = None phrase_real = phrases["en"]["real"] phrase_partial = phrases["en"]["partial"] real_and_transcribed_words, real_and_transcribed_words_ipa, mapped_words_indices = trainer_SST_lambda_en.matchSampleAndRecordedWords(phrase_real, phrase_partial) self.assertEqual(real_and_transcribed_words_ipa, [('haɪ', 'aɪ'), ('ðɛr,', 'ðɛr'), ('haʊ', 'haʊ'), ('ər', ''), ('ju?', '')]) self.assertEqual(mapped_words_indices, [0, 1, 2, -1, -1]) pronunciation_accuracy, current_words_pronunciation_accuracy= trainer_SST_lambda_en.getPronunciationAccuracy(real_and_transcribed_words) self.assertEqual(int(pronunciation_accuracy), 56) self.assertEqual(current_words_pronunciation_accuracy, [50.0, 100.0, 100.0, 0.0, 0.0]) def test_incorrect_transcription_with_correct_words_en(self): set_seed() phrase_real = phrases["en"]["real"] phrase_transcribed_incorrect = phrases["en"]["incorrect"] real_and_transcribed_words, real_and_transcribed_words_ipa, mapped_words_indices = trainer_SST_lambda_en.matchSampleAndRecordedWords(phrase_real, phrase_transcribed_incorrect) self.assertEqual(real_and_transcribed_words_ipa, [('haɪ', 'aɪ'), ('ðɛr,', 'hir'), ('haʊ', 'haʊ'), ('ər', 'ri'), ('ju?', 'juθ')]) self.assertEqual(mapped_words_indices, [0, 1, 2, 3, 4]) pronunciation_accuracy, current_words_pronunciation_accuracy= trainer_SST_lambda_en.getPronunciationAccuracy(real_and_transcribed_words) self.assertEqual(int(pronunciation_accuracy), 69) for accuracy, expected_accuracy in zip(current_words_pronunciation_accuracy, [50.0, 80.0, 100.0, 66.666666, 33.333333]): self.assertAlmostEqual(accuracy, expected_accuracy, places=2) def test_empty_phrase_real(self): set_seed() phrase_transcribed = phrases["de"]["transcribed"] with self.assertRaises(ValueError): try: trainer_SST_lambda_de.matchSampleAndRecordedWords(None, phrase_transcribed) except ValueError as ve: assert str(ve) == "Real text is None, but should be a string." raise ve def test_processAudioForGivenText_getTranscriptAndWordsLocations_de(self): set_seed() self.maxDiff = None phrase_real = phrases["de"]["real"] signal_de_shape = signal_de.shape[0] signal_transformed = transform(torch.Tensor(signal_de)).unsqueeze(0) result = trainer_SST_lambda_de.processAudioForGivenText(signal_transformed, phrase_real) expected_result = { 'recording_transcript': ' Hallo, wie geht es dir?', 'real_and_transcribed_words': [('Hallo,', 'Hallo,'), ('wie', 'wie'), ('geht', 'geht'), ('es', 'es'), ('dir?', 'dir?')], 'recording_ipa': ' haloː, viː ɡeːt ɛːs diːr?', 'start_time': '0.0 0.49 0.59 0.77 0.99', 'end_time': '0.37 0.69 0.87 1.09 1.31', 'real_and_transcribed_words_ipa': [('haloː,', 'haloː,'), ('viː', 'viː'), ('ɡeːt', 'ɡeːt'), ('ɛːs', 'ɛːs'), ('diːr?', 'diːr?')], 'pronunciation_accuracy': 100.0, 'pronunciation_categories': [0, 0, 0, 0, 0] } self.assertDictEqual(result, expected_result) transcript, word_locations = trainer_SST_lambda_de.getTranscriptAndWordsLocations(signal_de_shape) assert transcript == phrases["de"]["transcribed"] assert word_locations == [ (0, 5920), (7840, 11040), (9440, 13920), (12320, 17440), (15840, 20960), (0, 5920), (7840, 11040), (9440, 13920), (12320, 17440), (15840, 20960) ] def test_processAudioForGivenText_de(self): set_seed() self.maxDiff = None phrase_real = phrases["de"]["real"] signal_transformed = transform(torch.Tensor(signal_de)).unsqueeze(0) expected_result = { 'recording_transcript': ' Hallo, wie geht es dir?', 'real_and_transcribed_words': [('Hallo,', 'Hallo,'), ('wie', 'wie'), ('geht', 'geht'), ('es', 'es'), ('dir?', 'dir?')], 'recording_ipa': ' haloː, viː ɡeːt ɛːs diːr?', 'start_time': '0.0 0.49 0.59 0.77 0.99', 'end_time': '0.37 0.69 0.87 1.09 1.31', 'real_and_transcribed_words_ipa': [('haloː,', 'haloː,'), ('viː', 'viː'), ('ɡeːt', 'ɡeːt'), ('ɛːs', 'ɛːs'), ('diːr?', 'diːr?')], 'pronunciation_accuracy': 100.0, 'pronunciation_categories': [0, 0, 0, 0, 0] } result = trainer_SST_lambda_de.processAudioForGivenText(signal_transformed, phrase_real) self.assertDictEqual(result, expected_result) def test_removePunctuation_de(self): word = "glück," cleaned_word = trainer_SST_lambda_de.removePunctuation(word) self.assertEqual(cleaned_word, "glück") word = "glück,\n\rhallo..." cleaned_word = trainer_SST_lambda_de.removePunctuation(word) self.assertEqual(cleaned_word, "glück\n\rhallo") def test_getWordsPronunciationCategory_de(self): accuracies = [x for x in range(-121, 121, 10)] + [np.inf, -np.inf, np.nan, 1.5, -1.5] expected_categories = [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2] categories = trainer_SST_lambda_de.getWordsPronunciationCategory(accuracies) self.assertEqual(categories, expected_categories) def test_preprocessAudio_de(self): output_hash = utilities.hash_calculate(signal_de, is_file=False) assert output_hash == b'D9pMFzYL1BSPPg89ZCQE61xzb7QICXolYtC9EJRpvS0=' signal_transformed = transform(torch.Tensor(signal_de)).unsqueeze(0) preprocessed_audio = trainer_SST_lambda_de.preprocessAudio(signal_transformed) self.assertIsInstance(preprocessed_audio, torch.Tensor) self.assertEqual(preprocessed_audio.shape, (1, 23400)) output_hash = utilities.hash_calculate(preprocessed_audio.numpy(), is_file=False) assert output_hash == b'Ri/1rmgYmRSWaAw/Y3PoLEu1woiczhSUdUCbaMf++EM=' def test_preprocessAudioStandalone_de(self): output_hash = utilities.hash_calculate(signal_de, is_file=False) assert output_hash == b'D9pMFzYL1BSPPg89ZCQE61xzb7QICXolYtC9EJRpvS0=' signal_transformed = transform(torch.Tensor(signal_de)).unsqueeze(0) preprocessed_audio = pronunciationTrainer.preprocessAudioStandalone(signal_transformed) self.assertIsInstance(preprocessed_audio, torch.Tensor) self.assertEqual(preprocessed_audio.shape, (1, 23400)) output_hash = utilities.hash_calculate(preprocessed_audio.numpy(), is_file=False) assert output_hash == b'Ri/1rmgYmRSWaAw/Y3PoLEu1woiczhSUdUCbaMf++EM=' def test_processAudioForGivenText_getTranscriptAndWordsLocations_en(self): set_seed() self.maxDiff = None phrase_real = phrases["en"]["real"] signal_en_shape = signal_en.shape[0] signal_transformed = transform(torch.Tensor(signal_en)).unsqueeze(0) result = trainer_SST_lambda_en.processAudioForGivenText(signal_transformed, phrase_real) expected_result = { 'recording_transcript': ' Hi there, how are you?', 'real_and_transcribed_words': [('Hi', 'Hi'), ('there,', 'there,'), ('how', 'how'), ('are', 'are'), ('you?', 'you?')], 'recording_ipa': 'haɪ ðɛr, haʊ ər ju?', 'start_time': '0.0 0.09 0.41 0.53 0.65', 'end_time': '0.19 0.35 0.63 0.75 0.91', 'real_and_transcribed_words_ipa': [('haɪ', 'haɪ'), ('ðɛr,', 'ðɛr,'), ('haʊ', 'haʊ'), ('ər', 'ər'), ('ju?', 'ju?')], 'pronunciation_accuracy': 100.0, 'pronunciation_categories': [0, 0, 0, 0, 0] } self.assertDictEqual(result, expected_result) transcript, word_locations = trainer_SST_lambda_en.getTranscriptAndWordsLocations(signal_en_shape) assert transcript == phrases["en"]["transcribed"] assert word_locations == [ (0, 3040), (1440, 5600), (6560, 10080), (8480, 12000), (10400, 14560), (0, 3040), (1440, 5600), (6560, 10080), (8480, 12000), (10400, 14560) ] def test_processAudioForGivenText_en(self): set_seed() self.maxDiff = None phrase_real = phrases["en"]["real"] signal_transformed = transform(torch.Tensor(signal_en)).unsqueeze(0) expected_result = { 'recording_transcript': ' Hi there, how are you?', 'real_and_transcribed_words': [('Hi', 'Hi'), ('there,', 'there,'), ('how', 'how'), ('are', 'are'), ('you?', 'you?')], 'recording_ipa': 'haɪ ðɛr, haʊ ər ju?', 'start_time': '0.0 0.09 0.41 0.53 0.65', 'end_time': '0.19 0.35 0.63 0.75 0.91', 'real_and_transcribed_words_ipa': [('haɪ', 'haɪ'), ('ðɛr,', 'ðɛr,'), ('haʊ', 'haʊ'), ('ər', 'ər'), ('ju?', 'ju?')], 'pronunciation_accuracy': 100.0, 'pronunciation_categories': [0, 0, 0, 0, 0], } result = trainer_SST_lambda_en.processAudioForGivenText(signal_transformed, phrase_real) self.assertDictEqual(result, expected_result) def test_getPronunciationCategoryFromAccuracy_en(self): accuracies = [x for x in range(-121, 121, 10)] + [np.inf, -np.inf, np.nan, 1.5, -1.5] expected_categories = [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2] all_categories = [] for accuracy in accuracies: category = trainer_SST_lambda_en.getPronunciationCategoryFromAccuracy(accuracy) all_categories.append(category) self.assertEqual(all_categories, expected_categories) def test_matchSampleAndRecordedWords(self): set_seed() phrase_real = phrases["de"]["real"] phrase_transcribed = phrases["de"]["transcribed"] real_and_transcribed_words, real_words, transcribed_words = trainer_SST_lambda_de.matchSampleAndRecordedWords(phrase_real, phrase_transcribed) self.assertIsInstance(real_and_transcribed_words, list) self.assertIsInstance(real_words, list) self.assertIsInstance(transcribed_words, list) self.assertEqual(len(real_and_transcribed_words), len(real_words)) self.assertEqual(len(real_and_transcribed_words), len(transcribed_words)) def test_removePunctuation_en(self): word = "hello," cleaned_word = trainer_SST_lambda_en.removePunctuation(word) self.assertEqual(cleaned_word, "hello") word = "hello,\n\rworld..." cleaned_word = trainer_SST_lambda_en.removePunctuation(word) self.assertEqual(cleaned_word, "hello\n\rworld") def test_getWordsPronunciationCategory_en(self): accuracies = [x for x in range(-121, 121, 10)] + [np.inf, -np.inf, np.nan, 1.5, -1.5] expected_categories = [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2] categories = trainer_SST_lambda_en.getWordsPronunciationCategory(accuracies) self.assertEqual(categories, expected_categories) def test_preprocessAudio_en(self): output_hash = utilities.hash_calculate(signal_en, is_file=False) assert output_hash == b'zBAV/y7mecyPHLGiitHRP9vK7oU9hnYvyuatU0PQfts=' signal_transformed = transform(torch.Tensor(signal_en)).unsqueeze(0) preprocessed_audio = trainer_SST_lambda_en.preprocessAudio(signal_transformed) self.assertIsInstance(preprocessed_audio, torch.Tensor) self.assertEqual(preprocessed_audio.shape, (1, 16800)) output_hash = utilities.hash_calculate(preprocessed_audio.numpy(), is_file=False) assert output_hash == b'KsyH1MXIc+5e5B6CcijhitsGPUDRJjrJU2qg8bQi600=' def test_preprocessAudioStandalone_en(self): output_hash = utilities.hash_calculate(signal_en, is_file=False) assert output_hash == b'zBAV/y7mecyPHLGiitHRP9vK7oU9hnYvyuatU0PQfts=' signal_transformed = transform(torch.Tensor(signal_en)).unsqueeze(0) preprocessed_audio = pronunciationTrainer.preprocessAudioStandalone(signal_transformed) self.assertIsInstance(preprocessed_audio, torch.Tensor) self.assertEqual(preprocessed_audio.shape, (1, 16800)) output_hash = utilities.hash_calculate(preprocessed_audio.numpy(), is_file=False) assert output_hash == b'KsyH1MXIc+5e5B6CcijhitsGPUDRJjrJU2qg8bQi600=' if __name__ == '__main__': unittest.main()