File size: 15,213 Bytes
5885496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
"""
A model worker executes the model.
"""
import argparse
import asyncio
import dataclasses
import logging
import json
import time
from typing import List, Union
import threading
import uuid

from fastapi import FastAPI, Request, BackgroundTasks
from fastapi.responses import StreamingResponse
import requests
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import uvicorn
from functools import partial

from llava.constants import WORKER_HEART_BEAT_INTERVAL
from llava.utils import (build_logger, server_error_msg,
    pretty_print_semaphore)
from llava.model import *

GB = 1 << 30

worker_id = str(uuid.uuid4())[:6]
logger = build_logger("model_worker", f"model_worker_{worker_id}.log")
global_counter = 0

model_semaphore = None


DEFAULT_IMAGE_TOKEN = "<image>"
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
DEFAULT_IM_START_TOKEN = "<im_start>"
DEFAULT_IM_END_TOKEN = "<im_end>"


def heart_beat_worker(controller):

    while True:
        time.sleep(WORKER_HEART_BEAT_INTERVAL)
        controller.send_heart_beat()


def load_model(model_path, model_name, num_gpus):
    if num_gpus == 1:
        kwargs = {}
    else:
        kwargs = {
            "device_map": "auto",
            "max_memory": {i: "13GiB" for i in range(num_gpus)},
        }

    tokenizer = AutoTokenizer.from_pretrained(model_path)
    if 'llava' in model_name.lower():
        if 'mpt' in model_name.lower():
            model = LlavaMPTForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True, **kwargs)
        else:
            model = LlavaLlamaForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True, **kwargs)
    elif 'mpt' in model_name.lower():
        model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True, trust_remote_code=True, **kwargs)
    else:
        model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True, **kwargs)

    image_processor = None

    if 'llava' in model_name.lower():
        from transformers import CLIPImageProcessor, CLIPVisionModel
        image_processor = CLIPImageProcessor.from_pretrained(model.config.mm_vision_tower, torch_dtype=torch.float16)

        mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
        tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
        if mm_use_im_start_end:
            tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)

        vision_tower = model.get_model().vision_tower[0]
        if vision_tower.device.type == 'meta':
            vision_tower = CLIPVisionModel.from_pretrained(vision_tower.config._name_or_path, torch_dtype=torch.float16, low_cpu_mem_usage=True).cuda()
            model.get_model().vision_tower[0] = vision_tower
        else:
            vision_tower.to(device='cuda', dtype=torch.float16)
        vision_config = vision_tower.config
        vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0]
        vision_config.use_im_start_end = mm_use_im_start_end
        if mm_use_im_start_end:
            vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN])

    if num_gpus == 1:
        model.cuda()

    if hasattr(model.config, "max_sequence_length"):
        context_len = model.config.max_sequence_length
    else:
        context_len = 2048

    return tokenizer, model, image_processor, context_len


class ModelWorker:
    def __init__(self, controller_addr, worker_addr,
                 worker_id, no_register,
                 model_path, model_name,
                 keep_aspect_ratio,
                 num_gpus):
        self.controller_addr = controller_addr
        self.worker_addr = worker_addr
        self.worker_id = worker_id
        if model_path.endswith("/"):
            model_path = model_path[:-1]
        if model_name is None:
            model_paths = model_path.split("/")
            if model_paths[-1].startswith('checkpoint-'):
                self.model_name = model_paths[-2] + "_" + model_paths[-1]
            else:
                self.model_name = model_paths[-1]
        else:
            self.model_name = model_name

        logger.info(f"Loading the model {self.model_name} on worker {worker_id} ...")
        self.keep_aspect_ratio = keep_aspect_ratio
        self.tokenizer, self.model, self.image_processor, self.context_len = load_model(
            model_path, self.model_name, num_gpus)
        self.is_multimodal = 'llava' in model_path.lower()

        if not no_register:
            self.register_to_controller()
            self.heart_beat_thread = threading.Thread(
                target=heart_beat_worker, args=(self,))
            self.heart_beat_thread.start()

    def register_to_controller(self):
        logger.info("Register to controller")

        url = self.controller_addr + "/register_worker"
        data = {
            "worker_name": self.worker_addr,
            "check_heart_beat": True,
            "worker_status": self.get_status()
        }
        r = requests.post(url, json=data)
        assert r.status_code == 200

    def send_heart_beat(self):
        logger.info(f"Send heart beat. Models: {[self.model_name]}. "
                    f"Semaphore: {pretty_print_semaphore(model_semaphore)}. "
                    f"global_counter: {global_counter}")

        url = self.controller_addr + "/receive_heart_beat"

        while True:
            try:
                ret = requests.post(url, json={
                    "worker_name": self.worker_addr,
                    "queue_length": self.get_queue_length()}, timeout=5)
                exist = ret.json()["exist"]
                break
            except requests.exceptions.RequestException as e:
                logger.error(f"heart beat error: {e}")
            time.sleep(5)

        if not exist:
            self.register_to_controller()

    def get_queue_length(self):
        if model_semaphore is None:
            return 0
        else:
            return args.limit_model_concurrency - model_semaphore._value + (len(
                model_semaphore._waiters) if model_semaphore._waiters is not None else 0)

    def get_status(self):
        return {
            "model_names": [self.model_name],
            "speed": 1,
            "queue_length": self.get_queue_length(),
        }

    @torch.inference_mode()
    def generate_stream(self, params):
        tokenizer, model, image_processor = self.tokenizer, self.model, self.image_processor

        prompt = params["prompt"]
        ori_prompt = prompt
        images = params.get("images", None)
        if images is not None and len(images) > 0 and self.is_multimodal:
            from PIL import Image
            from io import BytesIO
            import base64
            assert type(images) is list
            if len(images) > 0:
                # assert len(images) == 1, "Only support one image for now"
                images = [Image.open(BytesIO(base64.b64decode(image))) for image in images]
                assert len(images) == prompt.count(DEFAULT_IMAGE_TOKEN), "Number of images does not match number of <image> tokens in prompt"

                if self.keep_aspect_ratio:
                    new_images = []
                    for image_idx, image in enumerate(images):
                        max_hw, min_hw = max(image.size), min(image.size)
                        aspect_ratio = max_hw / min_hw
                        max_len, min_len = 448, 224
                        shortest_edge = int(min(max_len / aspect_ratio, min_len))
                        image = image_processor.preprocess(image, return_tensors='pt', do_center_crop=False, size={"shortest_edge": shortest_edge})['pixel_values'][0]
                        new_images.append(image.to(self.model.device, dtype=torch.float16))
                        # replace the image token with the image patch token in the prompt (each occurrence)
                        cur_token_len = (image.shape[1]//14) * (image.shape[2]//14)
                        replace_token = DEFAULT_IMAGE_PATCH_TOKEN * cur_token_len
                        if getattr(self.model.config, 'mm_use_im_start_end', False):
                            replace_token = DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN
                        prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token, 1)
                    images = new_images
                else:
                    images = image_processor(images, return_tensors='pt')['pixel_values']
                    images = images.to(self.model.device, dtype=torch.float16)
                    replace_token = DEFAULT_IMAGE_PATCH_TOKEN * 256    # HACK: 256 is the max image token length hacked
                    if getattr(self.model.config, 'mm_use_im_start_end', False):
                        replace_token = DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN
                    prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token)
            else:
                images = None
            image_args = {"images": images}
        else:
            images = None
            image_args = {}

        l_prompt = len(prompt)
        temperature = float(params.get("temperature", 1.0))
        max_new_tokens = min(int(params.get("max_new_tokens", 256)), 1024)
        stop_str = params.get("stop", None)
        stop_idx = None
        if stop_str is not None:
            stop_idx = tokenizer(stop_str).input_ids
            if len(stop_idx) == 1:
                stop_idx = stop_idx[0]
            else:
                stop_idx = None

        input_ids = tokenizer(prompt).input_ids
        output_ids = list(input_ids)
        pred_ids = []

        max_src_len = self.context_len - max_new_tokens - 8
        input_ids = input_ids[-max_src_len:]

        past_key_values = None
        for i in range(max_new_tokens):
            if i == 0:
                out = model(
                    torch.as_tensor([input_ids]).cuda(),
                    use_cache=True,
                    **image_args)
                logits = out.logits
                past_key_values = out.past_key_values
            else:
                attention_mask = torch.ones(
                    1, past_key_values[0][0].shape[-2] + 1, device="cuda")
                out = model(input_ids=torch.as_tensor([[token]], device="cuda"),
                            use_cache=True,
                            attention_mask=attention_mask,
                            past_key_values=past_key_values)
                logits = out.logits
                past_key_values = out.past_key_values

            last_token_logits = logits[0][-1]
            if temperature < 1e-4:
                token = int(torch.argmax(last_token_logits))
            else:
                probs = torch.softmax(last_token_logits / temperature, dim=-1)
                token = int(torch.multinomial(probs, num_samples=1))

            output_ids.append(token)
            pred_ids.append(token)

            if stop_idx is not None and token == stop_idx:
                stopped = True
            elif token == tokenizer.eos_token_id:
                stopped = True
            else:
                stopped = False

            if i % args.stream_interval == 0 or i == max_new_tokens - 1 or stopped:
                cur_out = tokenizer.decode(pred_ids, skip_special_tokens=True)
                pos = cur_out.rfind(stop_str)
                if pos != -1:
                    cur_out = cur_out[:pos]
                    stopped = True
                output = ori_prompt + cur_out

                ret = {
                    "text": output,
                    "error_code": 0,
                }
                yield json.dumps(ret).encode() + b"\0"

            if stopped:
                break

        if past_key_values is not None:
            del past_key_values

    def generate_stream_gate(self, params):
        try:
            for x in self.generate_stream(params):
                yield x
        except ValueError as e:
            print("Caught ValueError:", e)
            ret = {
                "text": server_error_msg,
                "error_code": 1,
            }
            yield json.dumps(ret).encode() + b"\0"
        except torch.cuda.CudaError as e:
            print("Caught torch.cuda.CudaError:", e)
            ret = {
                "text": server_error_msg,
                "error_code": 1,
            }
            yield json.dumps(ret).encode() + b"\0"


app = FastAPI()


def release_model_semaphore(fn=None):
    model_semaphore.release()
    if fn is not None:
        fn()


@app.post("/worker_generate_stream")
async def generate_stream(request: Request):
    global model_semaphore, global_counter
    global_counter += 1
    params = await request.json()

    if model_semaphore is None:
        model_semaphore = asyncio.Semaphore(args.limit_model_concurrency)
    await model_semaphore.acquire()
    worker.send_heart_beat()
    generator = worker.generate_stream_gate(params)
    background_tasks = BackgroundTasks()
    background_tasks.add_task(partial(release_model_semaphore, fn=worker.send_heart_beat))
    return StreamingResponse(generator, background=background_tasks)


@app.post("/worker_get_status")
async def get_status(request: Request):
    return worker.get_status()


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--host", type=str, default="localhost")
    parser.add_argument("--port", type=int, default=21002)
    parser.add_argument("--worker-address", type=str,
        default="http://localhost:21002")
    parser.add_argument("--controller-address", type=str,
        default="http://localhost:21001")
    parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
    parser.add_argument("--model-name", type=str)
    parser.add_argument("--multi-modal", action="store_true", help="Multimodal mode is automatically detected with model name, please make sure `llava` is included in the model path.")
    parser.add_argument("--keep-aspect-ratio", action="store_true")
    parser.add_argument("--num-gpus", type=int, default=1)
    parser.add_argument("--limit-model-concurrency", type=int, default=5)
    parser.add_argument("--stream-interval", type=int, default=2)
    parser.add_argument("--no-register", action="store_true")
    args = parser.parse_args()
    logger.info(f"args: {args}")

    if args.multi_modal:
        logger.warning("Multimodal mode is automatically detected with model name, please make sure `llava` is included in the model path.")

    worker = ModelWorker(args.controller_address,
                         args.worker_address,
                         worker_id,
                         args.no_register,
                         args.model_path,
                         args.model_name,
                         args.keep_aspect_ratio,
                         args.num_gpus)
    uvicorn.run(app, host=args.host, port=args.port, log_level="info")