File size: 18,006 Bytes
3d9fba4
 
5885496
 
 
6144294
3d9fba4
5885496
6144294
 
 
 
 
 
e629203
 
 
5885496
3d9fba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5885496
 
3d9fba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5885496
 
 
3d9fba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5885496
3d9fba4
 
 
 
 
5885496
3d9fba4
 
 
 
 
 
968fffb
3d9fba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5885496
3d9fba4
 
 
 
 
 
 
 
 
 
 
 
 
 
968fffb
3d9fba4
 
 
 
 
968fffb
3d9fba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
968fffb
3d9fba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6144294
 
 
3d9fba4
968fffb
3d9fba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
968fffb
3d9fba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
from typing import List

import torch
import torch.nn as nn
import torch.nn.functional as F
from peft import LoraConfig, get_peft_model
from transformers import BitsAndBytesConfig, CLIPVisionModel

from utils.utils import (
    DEFAULT_IM_END_TOKEN,
    DEFAULT_IM_START_TOKEN,
    DEFAULT_IMAGE_PATCH_TOKEN,
)

from .llava.model.llava import LlavaLlamaForCausalLM
from .segment_anything import build_sam_vit_h


def dice_loss(
    inputs: torch.Tensor,
    targets: torch.Tensor,
    num_masks: float,
    scale=1000,  # 100000.0,
    eps=1e-6,
):
    """
    Compute the DICE loss, similar to generalized IOU for masks
    Args:
        inputs: A float tensor of arbitrary shape.
                The predictions for each example.
        targets: A float tensor with the same shape as inputs. Stores the binary
                 classification label for each element in inputs
                (0 for the negative class and 1 for the positive class).
    """
    inputs = inputs.sigmoid()
    inputs = inputs.flatten(1, 2)
    targets = targets.flatten(1, 2)
    numerator = 2 * (inputs / scale * targets).sum(-1)
    denominator = (inputs / scale).sum(-1) + (targets / scale).sum(-1)
    loss = 1 - (numerator + eps) / (denominator + eps)
    loss = loss.sum() / (num_masks + 1e-8)
    return loss


def sigmoid_ce_loss(
    inputs: torch.Tensor,
    targets: torch.Tensor,
    num_masks: float,
):
    """
    Args:
        inputs: A float tensor of arbitrary shape.
                The predictions for each example.
        targets: A float tensor with the same shape as inputs. Stores the binary
                 classification label for each element in inputs
                (0 for the negative class and 1 for the positive class).
    Returns:
        Loss tensor
    """
    loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
    loss = loss.flatten(1, 2).mean(1).sum() / (num_masks + 1e-8)
    return loss


class LISA(nn.Module):
    def __init__(
        self,
        local_rank,
        seg_token_idx,
        tokenizer,
        llm_version,
        lora_r,
        precision,
        load_in_4bit=False,
        load_in_8bit=False,
        lora_target_modules=["q_proj", "v_proj"],
        lora_alpha=16,
        lora_dropout=0.05,
        vision_tower="openai/clip-vit-large-patch14",
        mm_vision_select_layer=-2,
        freeze_lm=True,
        train_mask_decoder=True,
        out_dim=256,
        ce_loss_weight=1.0,
        dice_loss_weight=0.5,
        bce_loss_weight=2.0,
        vision_pretrained=None,
    ):
        super().__init__()
        self.local_rank = local_rank
        self.tokenizer = tokenizer
        self.image_token = tokenizer.cls_token_id
        self.precision = precision
        self.ce_loss_weight = ce_loss_weight
        self.dice_loss_weight = dice_loss_weight
        self.bce_loss_weight = bce_loss_weight

        # LLaVA
        tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
        num_new_tokens = tokenizer.add_tokens(
            [DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True
        )
        if precision == "bf16":
            self.lm = LlavaLlamaForCausalLM.from_pretrained(
                llm_version,
                torch_dtype=torch.bfloat16,
                cache_dir=None,
                low_cpu_mem_usage=True,
            )
        elif precision == "fp16":
            if load_in_4bit:
                self.lm = LlavaLlamaForCausalLM.from_pretrained(
                    llm_version,
                    load_in_4bit=True,
                    cache_dir=None,
                    low_cpu_mem_usage=True,
                    device_map="auto",
                    quantization_config=BitsAndBytesConfig(
                        load_in_4bit=True,
                        bnb_4bit_compute_dtype=torch.float16,
                        bnb_4bit_use_double_quant=True,
                        bnb_4bit_quant_type="nf4",
                    ),
                )
            elif load_in_8bit:
                self.lm = LlavaLlamaForCausalLM.from_pretrained(
                    llm_version,
                    load_in_8bit=True,
                    cache_dir=None,
                    low_cpu_mem_usage=True,
                    device_map="auto",
                )
            else:
                self.lm = LlavaLlamaForCausalLM.from_pretrained(
                    llm_version,
                    torch_dtype=torch.half,
                    cache_dir=None,
                    low_cpu_mem_usage=True,
                )
        else:
            self.lm = LlavaLlamaForCausalLM.from_pretrained(
                llm_version,
                torch_dtype=torch.float32,
                cache_dir=None,
                low_cpu_mem_usage=True,
            )

        self.lm.enable_input_require_grads()
        self.lm.gradient_checkpointing_enable()
        self.lm.config.use_cache = False
        model_vision_dict = self.lm.get_model().initialize_vision_modules(
            vision_tower=vision_tower,
            mm_vision_select_layer=mm_vision_select_layer,
            precision=precision,
        )
        vision_config = model_vision_dict["vision_config"]
        vision_tower = self.lm.get_model().vision_tower[0]
        self.lm.model.config.eos_token_id = tokenizer.eos_token_id
        self.lm.model.config.bos_token_id = tokenizer.bos_token_id
        self.lm.model.config.pad_token_id = tokenizer.pad_token_id

        if vision_tower.device.type == "meta":
            if precision == "bf16":
                vision_tower = CLIPVisionModel.from_pretrained(
                    vision_tower.config._name_or_path,
                    torch_dtype=torch.bfloat16,
                    low_cpu_mem_usage=True,
                ).cuda(local_rank)
            elif precision == "fp16":
                vision_tower = CLIPVisionModel.from_pretrained(
                    vision_tower.config._name_or_path,
                    torch_dtype=torch.half,
                    low_cpu_mem_usage=True,
                ).cuda(local_rank)
            else:
                vision_tower = CLIPVisionModel.from_pretrained(
                    vision_tower.config._name_or_path,
                    torch_dtype=torch.float32,
                    low_cpu_mem_usage=True,
                ).cuda(local_rank)
            self.lm.get_model().vision_tower[0] = vision_tower
        else:
            if precision == "bf16":
                vision_tower.to(device="cuda", dtype=torch.bfloat16)
            elif precision == "fp16":
                vision_tower.to(device="cuda", dtype=torch.half)
            else:
                vision_tower.to(device="cuda", dtype=torch.float32)

        self.lm.config.tune_mm_mlp_adapter = False
        self.lm.config.freeze_mm_mlp_adapter = False
        self.lm.config.mm_use_im_start_end = True
        vision_config.use_im_start_end = True
        self.lm.config.sep_image_conv_front = False

        self.lm.initialize_vision_tokenizer(
            mm_use_im_start_end=True,
            tokenizer=tokenizer,
            num_new_tokens=num_new_tokens,
            device=local_rank,
            tune_mm_mlp_adapter=False,
        )
        if freeze_lm:
            for n, param in self.lm.named_parameters():
                param.requires_grad = False

        # LoRA
        if lora_r > 0:
            config = LoraConfig(
                r=lora_r,
                lora_alpha=lora_alpha,
                target_modules=lora_target_modules,
                lora_dropout=lora_dropout,
                bias="none",
                task_type="CAUSAL_LM",
            )
            self.lm = get_peft_model(self.lm, config)
            self.lm.print_trainable_parameters()

        self.llm_version = llm_version

        self.seg_token_idx = seg_token_idx
        self.lm.resize_token_embeddings(len(tokenizer))

        for n, p in self.lm.named_parameters():
            if any([x in n for x in ["lm_head", "embed_tokens"]]) and p.shape[0] == len(
                tokenizer
            ):
                p.requires_grad = True

        # SAM
        self.visual_model = build_sam_vit_h(vision_pretrained)
        for param in self.visual_model.parameters():
            param.requires_grad = False
        if train_mask_decoder:
            self.visual_model.mask_decoder.train()
            for param in self.visual_model.mask_decoder.parameters():
                param.requires_grad = True

        # Projection layer
        in_dim = self.lm.config.hidden_size
        text_fc = [
            nn.Linear(in_dim, in_dim),
            nn.ReLU(inplace=True),
            nn.Linear(in_dim, out_dim),
            nn.Dropout(0.0),
        ]
        self.text_hidden_fcs = nn.ModuleList([nn.Sequential(*text_fc)])

    def get_visual_embs(self, pixel_values: torch.FloatTensor):
        with torch.no_grad():
            image_embeddings = self.visual_model.image_encoder(pixel_values)
        return image_embeddings

    def forward(
        self,
        images: torch.FloatTensor,
        images_clip: torch.FloatTensor,
        input_ids: torch.LongTensor,
        labels: torch.LongTensor,
        attention_masks: torch.LongTensor,
        offset: torch.LongTensor,
        masks_list: List[torch.FloatTensor],
        label_list: List[torch.Tensor],
        resize_list: List[tuple],
        inference: bool = False,
        **kwargs,
    ):
        image_embeddings = self.get_visual_embs(images)
        batch_size = image_embeddings.shape[0]
        assert batch_size == len(offset) - 1

        seg_token_mask = input_ids[:, 1:] == self.seg_token_idx
        seg_token_mask = torch.cat(
            [
                seg_token_mask,
                torch.zeros((seg_token_mask.shape[0], 1)).bool().cuda(self.local_rank),
            ],
            dim=1,
        )

        if inference:
            n_batch = 1
            length = input_ids.shape[0]
            assert images_clip.shape[0] == 1
            images_clip_extend = images_clip.expand(length, -1, -1, -1).contiguous()

            output_hidden_states = []
            for i in range(n_batch):
                start_i, end_i = i * length, min((i + 1) * length, input_ids.shape[0])
                output_i = self.lm(
                    images=images_clip_extend[: end_i - start_i],
                    attention_mask=attention_masks[start_i:end_i],
                    input_ids=input_ids[start_i:end_i],
                    output_hidden_states=True,
                )
                output_hidden_states.append(output_i.hidden_states)
                torch.cuda.empty_cache()

            output_hidden_states_list = []
            output_hidden_states_level = torch.cat(output_hidden_states, dim=0)
            output_hidden_states_list.append(output_hidden_states_level)
            output_hidden_states = output_hidden_states_list
            output = None

        else:
            images_clip_list = []
            for i in range(len(offset) - 1):
                start_i, end_i = offset[i], offset[i + 1]
                images_clip_i = (
                    images_clip[i]
                    .unsqueeze(0)
                    .expand(end_i - start_i, -1, -1, -1)
                    .contiguous()
                )
                images_clip_list.append(images_clip_i)
            images_clip = torch.cat(images_clip_list, dim=0)

            output = self.lm(
                images=images_clip,
                attention_mask=attention_masks,
                input_ids=input_ids,
                labels=labels,
                output_hidden_states=True,
            )
            output_hidden_states = output.hidden_states

        hidden_states = []

        assert len(self.text_hidden_fcs) == 1
        hidden_states.append(self.text_hidden_fcs[0](output_hidden_states[-1]))

        last_hidden_state = torch.stack(hidden_states, dim=-1).sum(dim=-1)

        pred_embeddings = last_hidden_state[seg_token_mask]
        seg_token_counts = seg_token_mask.int().sum(-1)  # [bs, ]

        seg_token_offset = seg_token_counts.cumsum(-1)
        seg_token_offset = torch.cat(
            [torch.zeros(1).long().cuda(), seg_token_offset], dim=0
        )

        seg_token_offset = seg_token_offset[offset]

        pred_embeddings_ = []
        for i in range(len(seg_token_offset) - 1):
            start_i, end_i = seg_token_offset[i], seg_token_offset[i + 1]
            pred_embeddings_.append(pred_embeddings[start_i:end_i])
        pred_embeddings = pred_embeddings_

        multimask_output = False
        pred_masks = []
        for i in range(len(pred_embeddings)):
            sparse_embeddings, dense_embeddings = self.visual_model.prompt_encoder(
                points=None,
                boxes=None,
                masks=None,
                text_embeds=pred_embeddings[i].unsqueeze(1),
            )
            sparse_embeddings = sparse_embeddings.to(pred_embeddings[i].dtype)
            low_res_masks, iou_predictions = self.visual_model.mask_decoder(
                image_embeddings=image_embeddings[i].unsqueeze(0),
                image_pe=self.visual_model.prompt_encoder.get_dense_pe(),
                sparse_prompt_embeddings=sparse_embeddings,
                dense_prompt_embeddings=dense_embeddings,
                multimask_output=multimask_output,
            )
            pred_mask = self.visual_model.postprocess_masks(
                low_res_masks,
                input_size=resize_list[i],
                original_size=label_list[i].shape,
            )
            pred_masks.append(pred_mask[:, 0])

        model_output = output
        gt_masks = masks_list

        if inference:
            return {
                "pred_masks": pred_masks,
                "gt_masks": gt_masks,
            }

        output = model_output.logits

        ce_loss = model_output.loss
        ce_loss = ce_loss * self.ce_loss_weight
        loss = ce_loss
        mask_bce_loss = 0
        mask_dice_loss = 0
        num_masks = 0
        for batch_idx in range(len(pred_masks)):
            gt_mask = gt_masks[batch_idx]
            pred_mask = pred_masks[batch_idx]

            assert (
                gt_mask.shape[0] == pred_mask.shape[0]
            ), "gt_mask.shape: {}, pred_mask.shape: {}".format(
                gt_mask.shape, pred_mask.shape
            )
            mask_bce_loss += (
                sigmoid_ce_loss(pred_mask, gt_mask, num_masks=gt_mask.shape[0])
                * gt_mask.shape[0]
            )
            mask_dice_loss += (
                dice_loss(pred_mask, gt_mask, num_masks=gt_mask.shape[0])
                * gt_mask.shape[0]
            )
            num_masks += gt_mask.shape[0]

        mask_bce_loss = self.bce_loss_weight * mask_bce_loss / (num_masks + 1e-8)
        mask_dice_loss = self.dice_loss_weight * mask_dice_loss / (num_masks + 1e-8)
        mask_loss = mask_bce_loss + mask_dice_loss

        loss += mask_loss

        return {
            "loss": loss,
            "ce_loss": ce_loss,
            "mask_bce_loss": mask_bce_loss,
            "mask_dice_loss": mask_dice_loss,
            "mask_loss": mask_loss,
        }

    def evaluate(
        self,
        images_clip,
        images,
        input_ids,
        resize_list,
        original_size_list,
        max_new_tokens=32,
        tokenizer=None,
    ):
        with torch.no_grad():
            outputs = self.lm.generate(
                images=images_clip,
                input_ids=input_ids,
                max_new_tokens=max_new_tokens,
                num_beams=1,
                output_hidden_states=True,
                return_dict_in_generate=True,
            )
            output_hidden_states = outputs.hidden_states[-1]
            output_ids = outputs.sequences

            seg_token_mask = output_ids[:, 1:] == self.seg_token_idx

            hidden_states = []

            assert len(self.text_hidden_fcs) == 1
            hidden_states.append(self.text_hidden_fcs[0](output_hidden_states))

            last_hidden_state = torch.stack(hidden_states, dim=-1).sum(dim=-1)
            pred_embeddings = last_hidden_state[seg_token_mask]

            seg_token_counts = seg_token_mask.int().sum(-1)  # [bs, ]
            seg_token_offset = seg_token_counts.cumsum(-1)
            seg_token_offset = torch.cat(
                [torch.zeros(1).long().cuda(), seg_token_offset], dim=0
            )

            pred_embeddings_ = []
            for i in range(len(seg_token_offset) - 1):
                start_i, end_i = seg_token_offset[i], seg_token_offset[i + 1]
                pred_embeddings_.append(pred_embeddings[start_i:end_i])
            pred_embeddings = pred_embeddings_

            image_embeddings = self.get_visual_embs(images)

            multimask_output = False
            pred_masks = []
            for i in range(len(pred_embeddings)):
                sparse_embeddings, dense_embeddings = self.visual_model.prompt_encoder(
                    points=None,
                    boxes=None,
                    masks=None,
                    text_embeds=pred_embeddings[i].unsqueeze(1),
                )

                sparse_embeddings = sparse_embeddings.to(pred_embeddings[i].dtype)
                low_res_masks, iou_predictions = self.visual_model.mask_decoder(
                    image_embeddings=image_embeddings[i].unsqueeze(0),
                    image_pe=self.visual_model.prompt_encoder.get_dense_pe(),
                    sparse_prompt_embeddings=sparse_embeddings,
                    dense_prompt_embeddings=dense_embeddings,
                    multimask_output=multimask_output,
                )

                pred_mask = self.visual_model.postprocess_masks(
                    low_res_masks,
                    input_size=resize_list[i],
                    original_size=original_size_list[i],
                )
                pred_masks.append(pred_mask[:, 0])

        return output_ids, pred_masks