File size: 13,920 Bytes
e5c9ee0
 
 
 
e789db0
9d7a440
e5c9ee0
3bd20e4
 
 
 
 
e5c9ee0
 
ca06190
e5c9ee0
 
 
 
 
 
 
 
 
 
 
 
 
3bd20e4
 
acec8bf
 
 
 
3bd20e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca06190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5c9ee0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca06190
e5c9ee0
 
37a5f04
 
 
 
 
 
 
 
 
 
e5c9ee0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8facf64
 
 
 
 
 
 
 
 
 
 
e5c9ee0
8facf64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5c9ee0
8facf64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5c9ee0
 
1186076
 
 
 
 
 
 
3bd20e4
81e8410
 
1186076
 
 
 
 
 
 
 
 
 
6d22b1d
1186076
 
 
 
6d22b1d
1186076
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81e8410
37a5f04
1186076
 
 
 
 
 
 
 
 
81e8410
37a5f04
1186076
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81e8410
1186076
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37a5f04
1186076
e5c9ee0
 
3bd20e4
 
9d7a440
3bd20e4
9d7a440
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1186076
 
3bd20e4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
import argparse
import os
import re
import sys
import logging
from typing import Callable

from fastapi import FastAPI, File, UploadFile, Request
from fastapi.responses import HTMLResponse, RedirectResponse
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates

import cv2
import gradio as gr
import nh3
import numpy as np
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, BitsAndBytesConfig, CLIPImageProcessor

from model.LISA import LISAForCausalLM
from model.llava import conversation as conversation_lib
from model.llava.mm_utils import tokenizer_image_token
from model.segment_anything.utils.transforms import ResizeLongestSide
from utils.utils import (DEFAULT_IM_END_TOKEN, DEFAULT_IM_START_TOKEN,
                         DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX)


CUSTOM_GRADIO_PATH = "/gradio"
app = FastAPI()

FASTAPI_STATIC = os.getenv("FASTAPI_STATIC")
os.makedirs(FASTAPI_STATIC, exist_ok=True)
app.mount("/static", StaticFiles(directory=FASTAPI_STATIC), name="static")
templates = Jinja2Templates(directory="templates")


def get_cleaned_input(input_str):
    input_str = nh3.clean(
        input_str,
        tags={
            "a",
            "abbr",
            "acronym",
            "b",
            "blockquote",
            "code",
            "em",
            "i",
            "li",
            "ol",
            "strong",
            "ul",
        },
        attributes={
            "a": {"href", "title"},
            "abbr": {"title"},
            "acronym": {"title"},
        },
        url_schemes={"http", "https", "mailto"},
        link_rel=None,
    )
    return input_str


@app.get("/", response_class=HTMLResponse)
async def home(request: Request):
    logging.info(f"Request raw: {request}.")
    clean_request = get_cleaned_input(str(request))
    logging.info(f"clean_request: {request}.")
    return templates.TemplateResponse(
        "home.html", {"clean_request": clean_request}
    )


# Gradio
examples = [
    [
        "Where can the driver see the car speed in this image? Please output segmentation mask.",
        "./resources/imgs/example1.jpg",
    ],
    [
        "Can you segment the food that tastes spicy and hot?",
        "./resources/imgs/example2.jpg",
    ],
    [
        "Assuming you are an autonomous driving robot, what part of the diagram would you manipulate to control the direction of travel? Please output segmentation mask and explain why.",
        "./resources/imgs/example1.jpg",
    ],
    [
        "What can make the woman stand higher? Please output segmentation mask and explain why.",
        "./resources/imgs/example3.jpg",
    ],
]
output_labels = ["Segmentation Output"]

title = "LISA: Reasoning Segmentation via Large Language Model"

description = """
<font size=4>
This is the online demo of LISA. \n
If multiple users are using it at the same time, they will enter a queue, which may delay some time. \n
**Note**: **Different prompts can lead to significantly varied results**. \n
**Note**: Please try to **standardize** your input text prompts to **avoid ambiguity**, and also pay attention to whether the **punctuations** of the input are correct. \n
**Note**: Current model is **LISA-13B-llama2-v0-explanatory**, and 4-bit quantization may impair text-generation quality. \n
**Usage**: <br>
&ensp;(1) To let LISA **segment something**, input prompt like: "Can you segment xxx in this image?", "What is xxx in this image? Please output segmentation mask."; <br>
&ensp;(2) To let LISA **output an explanation**, input prompt like: "What is xxx in this image? Please output segmentation mask and explain why."; <br>
&ensp;(3) To obtain **solely language output**, you can input like what you should do in current multi-modal LLM (e.g., LLaVA). <br>
Hope you can enjoy our work!
</font>
"""

article = """
<p style='text-align: center'>
<a href='https://arxiv.org/abs/2308.00692' target='_blank'>
Preprint Paper
</a>
\n
<p style='text-align: center'>
<a href='https://github.com/dvlab-research/LISA' target='_blank'>   Github Repo </a></p>
"""


def parse_args(args_to_parse):
    parser = argparse.ArgumentParser(description="LISA chat")
    parser.add_argument("--version", default="xinlai/LISA-13B-llama2-v1")
    parser.add_argument("--vis_save_path", default="./vis_output", type=str)
    parser.add_argument(
        "--precision",
        default="fp16",
        type=str,
        choices=["fp32", "bf16", "fp16"],
        help="precision for inference",
    )
    parser.add_argument("--image_size", default=1024, type=int, help="image size")
    parser.add_argument("--model_max_length", default=512, type=int)
    parser.add_argument("--lora_r", default=8, type=int)
    parser.add_argument(
        "--vision-tower", default="openai/clip-vit-large-patch14", type=str
    )
    parser.add_argument("--local-rank", default=0, type=int, help="node rank")
    parser.add_argument("--load_in_8bit", action="store_true", default=False)
    parser.add_argument("--load_in_4bit", action="store_true", default=False)
    parser.add_argument("--use_mm_start_end", action="store_true", default=True)
    parser.add_argument(
        "--conv_type",
        default="llava_v1",
        type=str,
        choices=["llava_v1", "llava_llama_2"],
    )
    return parser.parse_args(args_to_parse)


def set_image_precision_by_args(input_image, precision):
    if precision == "bf16":
        input_image = input_image.bfloat16()
    elif precision == "fp16":
        input_image = input_image.half()
    else:
        input_image = input_image.float()
    return input_image


def preprocess(
    x,
    pixel_mean=torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1),
    pixel_std=torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1),
    img_size=1024,
) -> torch.Tensor:
    """Normalize pixel values and pad to a square input."""
    # Normalize colors
    x = (x - pixel_mean) / pixel_std
    # Pad
    h, w = x.shape[-2:]
    padh = img_size - h
    padw = img_size - w
    x = F.pad(x, (0, padw, 0, padh))
    return x


def get_model(args_to_parse):
    os.makedirs(args_to_parse.vis_save_path, exist_ok=True)

    # global tokenizer, tokenizer
    # Create model
    _tokenizer = AutoTokenizer.from_pretrained(
        args_to_parse.version,
        cache_dir=None,
        model_max_length=args_to_parse.model_max_length,
        padding_side="right",
        use_fast=False,
    )
    _tokenizer.pad_token = _tokenizer.unk_token
    args_to_parse.seg_token_idx = _tokenizer("[SEG]", add_special_tokens=False).input_ids[0]
    torch_dtype = torch.float32
    if args_to_parse.precision == "bf16":
        torch_dtype = torch.bfloat16
    elif args_to_parse.precision == "fp16":
        torch_dtype = torch.half
    kwargs = {"torch_dtype": torch_dtype}
    if args_to_parse.load_in_4bit:
        kwargs.update(
            {
                "torch_dtype": torch.half,
                "load_in_4bit": True,
                "quantization_config": BitsAndBytesConfig(
                    load_in_4bit=True,
                    bnb_4bit_compute_dtype=torch.float16,
                    bnb_4bit_use_double_quant=True,
                    bnb_4bit_quant_type="nf4",
                    llm_int8_skip_modules=["visual_model"],
                ),
            }
        )
    elif args_to_parse.load_in_8bit:
        kwargs.update(
            {
                "torch_dtype": torch.half,
                "quantization_config": BitsAndBytesConfig(
                    llm_int8_skip_modules=["visual_model"],
                    load_in_8bit=True,
                ),
            }
        )
    _model = LISAForCausalLM.from_pretrained(
        args_to_parse.version, low_cpu_mem_usage=True, vision_tower=args_to_parse.vision_tower, seg_token_idx=args_to_parse.seg_token_idx, **kwargs
    )
    _model.config.eos_token_id = _tokenizer.eos_token_id
    _model.config.bos_token_id = _tokenizer.bos_token_id
    _model.config.pad_token_id = _tokenizer.pad_token_id
    _model.get_model().initialize_vision_modules(_model.get_model().config)
    vision_tower = _model.get_model().get_vision_tower()
    vision_tower.to(dtype=torch_dtype)
    if args_to_parse.precision == "bf16":
        _model = _model.bfloat16().cuda()
    elif (
            args_to_parse.precision == "fp16" and (not args_to_parse.load_in_4bit) and (not args_to_parse.load_in_8bit)
    ):
        vision_tower = _model.get_model().get_vision_tower()
        _model.model.vision_tower = None
        import deepspeed

        model_engine = deepspeed.init_inference(
            model=_model,
            dtype=torch.half,
            replace_with_kernel_inject=True,
            replace_method="auto",
        )
        _model = model_engine.module
        _model.model.vision_tower = vision_tower.half().cuda()
    elif args_to_parse.precision == "fp32":
        _model = _model.float().cuda()
    vision_tower = _model.get_model().get_vision_tower()
    vision_tower.to(device=args_to_parse.local_rank)
    _clip_image_processor = CLIPImageProcessor.from_pretrained(_model.config.vision_tower)
    _transform = ResizeLongestSide(args_to_parse.image_size)
    _model.eval()
    return _model, _clip_image_processor, _tokenizer, _transform


def get_inference_model_by_args(args_to_parse):
    model, clip_image_processor, tokenizer, transform = get_model(args_to_parse)

    ## to be implemented
    def inference(input_str, input_image):
        ## filter out special chars

        input_str = get_cleaned_input(input_str)
        logging.info(f"input_str type: {type(input_str)}, input_image type: {type(input_image)}.")
        logging.info(f"input_str: {input_str}.")

        ## input valid check
        if not re.match(r"^[A-Za-z ,.!?\'\"]+$", input_str) or len(input_str) < 1:
            output_str = "[Error] Invalid input: ", input_str
            # output_image = np.zeros((128, 128, 3))
            ## error happened
            output_image = cv2.imread("./resources/error_happened.png")[:, :, ::-1]
            return output_image, output_str

        # Model Inference
        conv = conversation_lib.conv_templates[args_to_parse.conv_type].copy()
        conv.messages = []

        prompt = input_str
        prompt = DEFAULT_IMAGE_TOKEN + "\n" + prompt
        if args_to_parse.use_mm_start_end:
            replace_token = (
                DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN
            )
            prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token)

        conv.append_message(conv.roles[0], prompt)
        conv.append_message(conv.roles[1], "")
        prompt = conv.get_prompt()

        image_np = cv2.imread(input_image)
        image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
        original_size_list = [image_np.shape[:2]]

        image_clip = (
            clip_image_processor.preprocess(image_np, return_tensors="pt")[
                "pixel_values"
            ][0]
            .unsqueeze(0)
            .cuda()
        )
        logging.info(f"image_clip type: {type(image_clip)}.")
        image_clip = set_image_precision_by_args(image_clip, args_to_parse.precision)

        image = transform.apply_image(image_np)
        resize_list = [image.shape[:2]]

        image = (
            preprocess(torch.from_numpy(image).permute(2, 0, 1).contiguous())
            .unsqueeze(0)
            .cuda()
        )
        logging.info(f"image_clip type: {type(image_clip)}.")
        image = set_image_precision_by_args(image, args_to_parse.precision)

        input_ids = tokenizer_image_token(prompt, tokenizer, return_tensors="pt")
        input_ids = input_ids.unsqueeze(0).cuda()

        output_ids, pred_masks = model.evaluate(
            image_clip,
            image,
            input_ids,
            resize_list,
            original_size_list,
            max_new_tokens=512,
            tokenizer=tokenizer,
        )
        output_ids = output_ids[0][output_ids[0] != IMAGE_TOKEN_INDEX]

        text_output = tokenizer.decode(output_ids, skip_special_tokens=False)
        text_output = text_output.replace("\n", "").replace("  ", " ")
        text_output = text_output.split("ASSISTANT: ")[-1]

        logging.info(f"text_output type: {type(text_output)}, text_output: {text_output}.")
        save_img = None
        for i, pred_mask in enumerate(pred_masks):
            if pred_mask.shape[0] == 0:
                continue

            pred_mask = pred_mask.detach().cpu().numpy()[0]
            pred_mask = pred_mask > 0

            save_img = image_np.copy()
            save_img[pred_mask] = (
                image_np * 0.5
                + pred_mask[:, :, None].astype(np.uint8) * np.array([255, 0, 0]) * 0.5
            )[pred_mask]

        output_str = "ASSITANT: " + text_output  # input_str
        if save_img is not None:
            output_image = save_img  # input_image
        else:
            ## no seg output
            output_image = cv2.imread("./resources/no_seg_out.png")[:, :, ::-1]
        return output_image, output_str

    return inference


def get_gradio_interface(
        fn_inference: Callable
    ):
    return gr.Interface(
        fn_inference,
        inputs=[
            gr.Textbox(lines=1, placeholder=None, label="Text Instruction"),
            gr.Image(type="filepath", label="Input Image")
        ],
        outputs=[
            gr.Image(type="pil", label="Segmentation Output"),
            gr.Textbox(lines=1, placeholder=None, label="Text Output"),
        ],
        title=title,
        description=description,
        article=article,
        examples=examples,
        allow_flagging="auto",
    )


if __name__ == '__main__':
    args = parse_args(sys.argv[1:])
    inference_fn = get_inference_model_by_args(args)
    io = get_gradio_interface(inference_fn)
    app = gr.mount_gradio_app(app, io, path=CUSTOM_GRADIO_PATH)