Spaces:
Paused
Paused
File size: 12,609 Bytes
a84a5a1 326115c a84a5a1 c41e6ce a84a5a1 719ecfd c41e6ce 719ecfd c41e6ce 719ecfd a84a5a1 c41e6ce e5c9ee0 c41e6ce f182d7a acec8bf 326115c 719ecfd 326115c c5fe4a2 3bd20e4 a84a5a1 f182d7a a84a5a1 3bd20e4 c5fe4a2 c41e6ce c5fe4a2 3bd20e4 719ecfd a5b4be9 719ecfd a5b4be9 719ecfd c5fe4a2 a84a5a1 c41e6ce a84a5a1 c41e6ce f182d7a a84a5a1 c41e6ce f182d7a c41e6ce f182d7a c41e6ce f182d7a c41e6ce f182d7a c41e6ce f182d7a c41e6ce f182d7a 719ecfd a84a5a1 c41e6ce a84a5a1 c41e6ce a84a5a1 719ecfd a84a5a1 719ecfd a84a5a1 719ecfd a84a5a1 72ceb76 c41e6ce a84a5a1 c41e6ce a84a5a1 c41e6ce f623930 c41e6ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
import argparse
import logging
import os
import re
import sys
from typing import Callable
import cv2
import gradio as gr
import nh3
import numpy as np
import torch
import torch.nn.functional as F
from fastapi import FastAPI
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates
from transformers import AutoTokenizer, BitsAndBytesConfig, CLIPImageProcessor
from model.LISA import LISAForCausalLM
from model.llava import conversation as conversation_lib
from model.llava.mm_utils import tokenizer_image_token
from model.segment_anything.utils.transforms import ResizeLongestSide
from utils import constants, session_logger, utils
session_logger.change_logging(logging.DEBUG)
CUSTOM_GRADIO_PATH = "/"
app = FastAPI(title="lisa_app", version="1.0")
FASTAPI_STATIC = os.getenv("FASTAPI_STATIC")
os.makedirs(FASTAPI_STATIC, exist_ok=True)
app.mount("/static", StaticFiles(directory=FASTAPI_STATIC), name="static")
templates = Jinja2Templates(directory="templates")
placeholders = utils.create_placeholder_variables()
@app.get("/health")
@session_logger.set_uuid_logging
def health() -> str:
import json
try:
logging.info("health check")
return json.dumps({"msg": "ok"})
except Exception as e:
logging.error(f"exception:{e}.")
return json.dumps({"msg": "request failed"})
@session_logger.set_uuid_logging
def parse_args(args_to_parse):
parser = argparse.ArgumentParser(description="LISA chat")
parser.add_argument("--version", default="xinlai/LISA-13B-llama2-v1-explanatory")
parser.add_argument("--vis_save_path", default="./vis_output", type=str)
parser.add_argument(
"--precision",
default="fp16",
type=str,
choices=["fp32", "bf16", "fp16"],
help="precision for inference",
)
parser.add_argument("--image_size", default=1024, type=int, help="image size")
parser.add_argument("--model_max_length", default=512, type=int)
parser.add_argument("--lora_r", default=8, type=int)
parser.add_argument(
"--vision-tower", default="openai/clip-vit-large-patch14", type=str
)
parser.add_argument("--local-rank", default=0, type=int, help="node rank")
parser.add_argument("--load_in_8bit", action="store_true", default=False)
parser.add_argument("--load_in_4bit", action="store_true", default=True)
parser.add_argument("--use_mm_start_end", action="store_true", default=True)
parser.add_argument(
"--conv_type",
default="llava_v1",
type=str,
choices=["llava_v1", "llava_llama_2"],
)
return parser.parse_args(args_to_parse)
@session_logger.set_uuid_logging
def get_cleaned_input(input_str):
logging.info(f"start cleaning of input_str: {input_str}.")
input_str = nh3.clean(
input_str,
tags={
"a",
"abbr",
"acronym",
"b",
"blockquote",
"code",
"em",
"i",
"li",
"ol",
"strong",
"ul",
},
attributes={
"a": {"href", "title"},
"abbr": {"title"},
"acronym": {"title"},
},
url_schemes={"http", "https", "mailto"},
link_rel=None,
)
logging.info(f"cleaned input_str: {input_str}.")
return input_str
@session_logger.set_uuid_logging
def set_image_precision_by_args(input_image, precision):
if precision == "bf16":
input_image = input_image.bfloat16()
elif precision == "fp16":
input_image = input_image.half()
else:
input_image = input_image.float()
return input_image
@session_logger.set_uuid_logging
def preprocess(
x,
pixel_mean=torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1),
pixel_std=torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1),
img_size=1024,
) -> torch.Tensor:
"""Normalize pixel values and pad to a square input."""
logging.info("preprocess started")
# Normalize colors
x = (x - pixel_mean) / pixel_std
# Pad
h, w = x.shape[-2:]
padh = img_size - h
padw = img_size - w
x = F.pad(x, (0, padw, 0, padh))
logging.info("preprocess ended")
return x
@session_logger.set_uuid_logging
def get_model(args_to_parse):
logging.info("starting model preparation...")
os.makedirs(args_to_parse.vis_save_path, exist_ok=True)
# global tokenizer, tokenizer
# Create model
_tokenizer = AutoTokenizer.from_pretrained(
args_to_parse.version,
cache_dir=None,
model_max_length=args_to_parse.model_max_length,
padding_side="right",
use_fast=False,
)
_tokenizer.pad_token = _tokenizer.unk_token
args_to_parse.seg_token_idx = _tokenizer("[SEG]", add_special_tokens=False).input_ids[0]
torch_dtype = torch.float32
if args_to_parse.precision == "bf16":
torch_dtype = torch.bfloat16
elif args_to_parse.precision == "fp16":
torch_dtype = torch.half
kwargs = {"torch_dtype": torch_dtype}
if args_to_parse.load_in_4bit:
kwargs.update(
{
"torch_dtype": torch.half,
"load_in_4bit": True,
"quantization_config": BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
llm_int8_skip_modules=["visual_model"],
),
}
)
elif args_to_parse.load_in_8bit:
kwargs.update(
{
"torch_dtype": torch.half,
"quantization_config": BitsAndBytesConfig(
llm_int8_skip_modules=["visual_model"],
load_in_8bit=True,
),
}
)
_model = LISAForCausalLM.from_pretrained(
args_to_parse.version, low_cpu_mem_usage=True, vision_tower=args_to_parse.vision_tower, seg_token_idx=args_to_parse.seg_token_idx, **kwargs
)
_model.config.eos_token_id = _tokenizer.eos_token_id
_model.config.bos_token_id = _tokenizer.bos_token_id
_model.config.pad_token_id = _tokenizer.pad_token_id
_model.get_model().initialize_vision_modules(_model.get_model().config)
vision_tower = _model.get_model().get_vision_tower()
vision_tower.to(dtype=torch_dtype)
if args_to_parse.precision == "bf16":
_model = _model.bfloat16().cuda()
elif (
args_to_parse.precision == "fp16" and (not args_to_parse.load_in_4bit) and (not args_to_parse.load_in_8bit)
):
vision_tower = _model.get_model().get_vision_tower()
_model.model.vision_tower = None
import deepspeed
model_engine = deepspeed.init_inference(
model=_model,
dtype=torch.half,
replace_with_kernel_inject=True,
replace_method="auto",
)
_model = model_engine.module
_model.model.vision_tower = vision_tower.half().cuda()
elif args_to_parse.precision == "fp32":
_model = _model.float().cuda()
vision_tower = _model.get_model().get_vision_tower()
vision_tower.to(device=args_to_parse.local_rank)
_clip_image_processor = CLIPImageProcessor.from_pretrained(_model.config.vision_tower)
_transform = ResizeLongestSide(args_to_parse.image_size)
_model.eval()
logging.info("model preparation ok!")
return _model, _clip_image_processor, _tokenizer, _transform
@session_logger.set_uuid_logging
def get_inference_model_by_args(args_to_parse):
logging.info(f"args_to_parse:{args_to_parse}, creating model...")
model, clip_image_processor, tokenizer, transform = get_model(args_to_parse)
logging.info("created model, preparing inference function")
no_seg_out, error_happened = placeholders["no_seg_out"], placeholders["error_happened"]
@session_logger.set_uuid_logging
def inference(input_str, input_image):
## filter out special chars
input_str = get_cleaned_input(input_str)
logging.info(f"input_str type: {type(input_str)}, input_image type: {type(input_image)}.")
logging.info(f"input_str: {input_str}.")
## input valid check
if not re.match(r"^[A-Za-z ,.!?\'\"]+$", input_str) or len(input_str) < 1:
output_str = "[Error] Invalid input: ", input_str
return error_happened, output_str
# Model Inference
conv = conversation_lib.conv_templates[args_to_parse.conv_type].copy()
conv.messages = []
prompt = input_str
prompt = utils.DEFAULT_IMAGE_TOKEN + "\n" + prompt
if args_to_parse.use_mm_start_end:
replace_token = (
utils.DEFAULT_IM_START_TOKEN + utils.DEFAULT_IMAGE_TOKEN + utils.DEFAULT_IM_END_TOKEN
)
prompt = prompt.replace(utils.DEFAULT_IMAGE_TOKEN, replace_token)
conv.append_message(conv.roles[0], prompt)
conv.append_message(conv.roles[1], "")
prompt = conv.get_prompt()
image_np = cv2.imread(input_image)
image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
original_size_list = [image_np.shape[:2]]
image_clip = (
clip_image_processor.preprocess(image_np, return_tensors="pt")[
"pixel_values"
][0]
.unsqueeze(0)
.cuda()
)
logging.info(f"image_clip type: {type(image_clip)}.")
image_clip = set_image_precision_by_args(image_clip, args_to_parse.precision)
image = transform.apply_image(image_np)
resize_list = [image.shape[:2]]
image = (
preprocess(torch.from_numpy(image).permute(2, 0, 1).contiguous())
.unsqueeze(0)
.cuda()
)
logging.info(f"image_clip type: {type(image_clip)}.")
image = set_image_precision_by_args(image, args_to_parse.precision)
input_ids = tokenizer_image_token(prompt, tokenizer, return_tensors="pt")
input_ids = input_ids.unsqueeze(0).cuda()
output_ids, pred_masks = model.evaluate(
image_clip,
image,
input_ids,
resize_list,
original_size_list,
max_new_tokens=512,
tokenizer=tokenizer,
)
output_ids = output_ids[0][output_ids[0] != utils.IMAGE_TOKEN_INDEX]
text_output = tokenizer.decode(output_ids, skip_special_tokens=False)
text_output = text_output.replace("\n", "").replace(" ", " ")
text_output = text_output.split("ASSISTANT: ")[-1]
logging.info(f"text_output type: {type(text_output)}, text_output: {text_output}.")
save_img = None
for i, pred_mask in enumerate(pred_masks):
if pred_mask.shape[0] == 0:
continue
pred_mask = pred_mask.detach().cpu().numpy()[0]
pred_mask = pred_mask > 0
save_img = image_np.copy()
save_img[pred_mask] = (
image_np * 0.5
+ pred_mask[:, :, None].astype(np.uint8) * np.array([255, 0, 0]) * 0.5
)[pred_mask]
output_str = f"ASSISTANT: {text_output}"
output_image = no_seg_out if save_img is None else save_img
logging.info(f"output_image type: {type(output_image)}.")
return output_image, output_str
logging.info("prepared inference function!")
return inference
@session_logger.set_uuid_logging
def get_gradio_interface(
fn_inference: Callable
):
return gr.Interface(
fn_inference,
inputs=[
gr.Textbox(lines=1, placeholder=None, label="Text Instruction"),
gr.Image(type="filepath", label="Input Image")
],
outputs=[
gr.Image(type="pil", label="Segmentation Output"),
gr.Textbox(lines=1, placeholder=None, label="Text Output")
],
title=constants.title,
description=constants.description,
article=constants.article,
examples=constants.examples,
allow_flagging="auto"
)
logging.info(f"sys.argv:{sys.argv}.")
args = parse_args([])
logging.info(f"prepared default arguments:{args}.")
inference_fn = get_inference_model_by_args(args)
logging.info(f"prepared inference_fn function:{inference_fn.__name__}, creating gradio interface...")
io = get_gradio_interface(inference_fn)
logging.info("created gradio interface")
app = gr.mount_gradio_app(app, io, path=CUSTOM_GRADIO_PATH)
logging.info("mounted gradio app within fastapi")
|