Spaces:
Paused
Paused
""" | |
Usage: | |
python3 -m fastchat.serve.cli --model ~/model_weights/llama-7b | |
""" | |
import argparse | |
import time | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from llava.conversation import conv_templates, SeparatorStyle | |
def generate_stream(tokenizer, model, params, device, | |
context_len=2048, stream_interval=2): | |
"""Adapted from fastchat/serve/model_worker.py::generate_stream""" | |
prompt = params["prompt"] | |
l_prompt = len(prompt) | |
temperature = float(params.get("temperature", 1.0)) | |
max_new_tokens = int(params.get("max_new_tokens", 256)) | |
stop_str = params.get("stop", None) | |
input_ids = tokenizer(prompt).input_ids | |
output_ids = list(input_ids) | |
max_src_len = context_len - max_new_tokens - 8 | |
input_ids = input_ids[-max_src_len:] | |
for i in range(max_new_tokens): | |
if i == 0: | |
out = model( | |
torch.as_tensor([input_ids], device=device), use_cache=True) | |
logits = out.logits | |
past_key_values = out.past_key_values | |
else: | |
attention_mask = torch.ones( | |
1, past_key_values[0][0].shape[-2] + 1, device=device) | |
out = model(input_ids=torch.as_tensor([[token]], device=device), | |
use_cache=True, | |
attention_mask=attention_mask, | |
past_key_values=past_key_values) | |
logits = out.logits | |
past_key_values = out.past_key_values | |
last_token_logits = logits[0][-1] | |
if temperature < 1e-4: | |
token = int(torch.argmax(last_token_logits)) | |
else: | |
probs = torch.softmax(last_token_logits / temperature, dim=-1) | |
token = int(torch.multinomial(probs, num_samples=1)) | |
output_ids.append(token) | |
if token == tokenizer.eos_token_id: | |
stopped = True | |
else: | |
stopped = False | |
if i % stream_interval == 0 or i == max_new_tokens - 1 or stopped: | |
output = tokenizer.decode(output_ids, skip_special_tokens=True) | |
pos = output.rfind(stop_str, l_prompt) | |
if pos != -1: | |
output = output[:pos] | |
stopped = True | |
yield output | |
if stopped: | |
break | |
del past_key_values | |
def main(args): | |
model_name = args.model_name | |
num_gpus = args.num_gpus | |
# Model | |
if args.device == "cuda": | |
kwargs = {"torch_dtype": torch.float16} | |
if num_gpus == "auto": | |
kwargs["device_map"] = "auto" | |
else: | |
num_gpus = int(num_gpus) | |
if num_gpus != 1: | |
kwargs.update({ | |
"device_map": "auto", | |
"max_memory": {i: "13GiB" for i in range(num_gpus)}, | |
}) | |
elif args.device == "cpu": | |
kwargs = {} | |
else: | |
raise ValueError(f"Invalid device: {args.device}") | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name, | |
low_cpu_mem_usage=True, **kwargs) | |
if args.device == "cuda" and num_gpus == 1: | |
model.cuda() | |
# Chat | |
conv = conv_templates[args.conv_template].copy() | |
while True: | |
try: | |
inp = input(f"{conv.roles[0]}: ") | |
except EOFError: | |
inp = "" | |
if not inp: | |
print("exit...") | |
break | |
conv.append_message(conv.roles[0], inp) | |
conv.append_message(conv.roles[1], None) | |
prompt = conv.get_prompt() | |
params = { | |
"model": model_name, | |
"prompt": prompt, | |
"temperature": args.temperature, | |
"max_new_tokens": args.max_new_tokens, | |
"stop": conv.sep if conv.sep_style == SeparatorStyle.SINGLE else conv.sep2, | |
} | |
print(f"{conv.roles[1]}: ", end="", flush=True) | |
pre = 0 | |
for outputs in generate_stream(tokenizer, model, params, args.device): | |
outputs = outputs[len(prompt) + 1:].strip() | |
outputs = outputs.split(" ") | |
now = len(outputs) | |
if now - 1 > pre: | |
print(" ".join(outputs[pre:now-1]), end=" ", flush=True) | |
pre = now - 1 | |
print(" ".join(outputs[pre:]), flush=True) | |
conv.messages[-1][-1] = " ".join(outputs) | |
if args.debug: | |
print("\n", {"prompt": prompt, "outputs": outputs}, "\n") | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--model-name", type=str, default="facebook/opt-350m") | |
parser.add_argument("--num-gpus", type=str, default="1") | |
parser.add_argument("--device", type=str, choices=["cuda", "cpu"], default="cuda") | |
parser.add_argument("--conv-template", type=str, default="v1") | |
parser.add_argument("--temperature", type=float, default=0.7) | |
parser.add_argument("--max-new-tokens", type=int, default=512) | |
parser.add_argument("--debug", action="store_true") | |
args = parser.parse_args() | |
main(args) | |