Spaces:
Paused
Paused
# Adopted from https://github.com/lm-sys/FastChat. Below is the original copyright: | |
from typing import List, Optional, Tuple | |
import torch | |
from torch import nn | |
import transformers | |
from transformers.models.llama.modeling_llama import apply_rotary_pos_emb | |
from einops import rearrange | |
from flash_attn.flash_attn_interface import flash_attn_unpadded_qkvpacked_func | |
from flash_attn.bert_padding import unpad_input, pad_input | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = False, | |
use_cache: bool = False, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], | |
Optional[Tuple[torch.Tensor]]]: | |
"""Input shape: Batch x Time x Channel | |
attention_mask: [bsz, q_len] | |
""" | |
bsz, q_len, _ = hidden_states.size() | |
query_states = self.q_proj(hidden_states).view( | |
bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
key_states = self.k_proj(hidden_states).view( | |
bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
value_states = self.v_proj(hidden_states).view( | |
bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
# [bsz, q_len, nh, hd] | |
# [bsz, nh, q_len, hd] | |
kv_seq_len = key_states.shape[-2] | |
offset = 0 | |
if past_key_value is not None: | |
offset = past_key_value[0].shape[-2] | |
kv_seq_len += offset | |
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | |
query_states, key_states = apply_rotary_pos_emb(query_states, | |
key_states, | |
cos, | |
sin, | |
offset=offset) | |
# [bsz, nh, t, hd] | |
assert not output_attentions, "output_attentions is not supported" | |
assert not use_cache, "use_cache is not supported" | |
assert past_key_value is None, "past_key_value is not supported" | |
# Flash attention codes from | |
# https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/flash_attention.py | |
# transform the data into the format required by flash attention | |
qkv = torch.stack([query_states, key_states, value_states], dim=2) # [bsz, nh, 3, q_len, hd] | |
qkv = qkv.transpose(1, 3) # [bsz, q_len, 3, nh, hd] | |
# We have disabled _prepare_decoder_attention_mask in LlamaModel | |
# the attention_mask should be the same as the key_padding_mask | |
key_padding_mask = attention_mask | |
if key_padding_mask is None: | |
qkv = rearrange(qkv, 'b s ... -> (b s) ...') | |
max_s = q_len | |
cu_q_lens = torch.arange(0, (bsz + 1) * q_len, step=q_len, dtype=torch.int32, | |
device=qkv.device) | |
output = flash_attn_unpadded_qkvpacked_func( | |
qkv, cu_q_lens, max_s, 0.0, | |
softmax_scale=None, causal=True | |
) | |
output = rearrange(output, '(b s) ... -> b s ...', b=bsz) | |
else: | |
nheads = qkv.shape[-2] | |
x = rearrange(qkv, 'b s three h d -> b s (three h d)') | |
x_unpad, indices, cu_q_lens, max_s = unpad_input(x, key_padding_mask) | |
x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads) | |
output_unpad = flash_attn_unpadded_qkvpacked_func( | |
x_unpad, cu_q_lens, max_s, 0.0, | |
softmax_scale=None, causal=True | |
) | |
output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'), | |
indices, bsz, q_len), | |
'b s (h d) -> b s h d', h=nheads) | |
return self.o_proj(rearrange(output, | |
'b s h d -> b s (h d)')), None, None | |
# Disable the transformation of the attention mask in LlamaModel as the flash attention | |
# requires the attention mask to be the same as the key_padding_mask | |
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, | |
inputs_embeds, past_key_values_length): | |
# [bsz, seq_len] | |
return attention_mask | |
def replace_llama_attn_with_flash_attn(): | |
transformers.models.llama.modeling_llama.LlamaModel._prepare_decoder_attention_mask = _prepare_decoder_attention_mask | |
transformers.models.llama.modeling_llama.LlamaAttention.forward = forward | |