alex-abb commited on
Commit
bcda593
·
verified ·
1 Parent(s): 95f7ff3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -32
app.py CHANGED
@@ -1,10 +1,9 @@
1
  import os
2
  import requests
3
- import gradio as gr
4
- from bs4 import BeautifulSoup
5
 
6
  api_token = os.environ.get("TOKEN")
7
- API_URL = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B-Instruct"
8
  headers = {"Authorization": f"Bearer {api_token}"}
9
 
10
  def query(payload):
@@ -13,8 +12,7 @@ def query(payload):
13
 
14
  def analyze_sentiment(pl7_texts):
15
  output = query({
16
- "inputs": f'''<|begin_of_text|>
17
- <|start_header_id|>system<|end_header_id|>
18
  You're going to deeply analyze the texts I'm going to give you and you're only going to tell me which category they belong to by answering only the words that correspond to the following categories:
19
  For posts that talk about chat models/LLM, return "Chatmodel/LLM"
20
  For posts that talk about image generation models, return "image_generation"
@@ -26,46 +24,34 @@ For posts about tools and libraries, return "tools_libraries"
26
  For posts containing tutorials and guides, return "tutorials_guides"
27
  For posts about debugging and problem-solving, return "debugging"
28
  Respond only with the category name, without any additional explanation or text.
29
- <|eot_id|>
30
- <|start_header_id|>user<|end_header_id|>
 
31
  {pl7_texts}
32
- <|eot_id|>
33
- <|start_header_id|>assistant<|end_header_id|>
34
  '''
35
  })
36
- if isinstance(output, list) and len(output) > 0:
37
- response = output[0].get('generated_text', '').strip().lower()
38
- categories = {
39
- 'questions': 'Questions',
40
- 'chatmodel/llm': 'Chat Model/LLM',
41
- 'image_generation': 'Image Generation',
42
- 'fine_tuning': 'Fine-tuning',
43
- 'ethics_bias': 'Ethics and Bias',
44
- 'datasets': 'Datasets',
45
- 'tools_libraries': 'Tools and Libraries',
46
- 'tutorials_guides': 'Tutorials and Guides',
47
- 'debugging': 'Debugging'
48
- }
49
- return categories.get(response, f"Error: Ambiguous response - '{response}'")
50
- return "Error: No valid response received"
51
 
52
  url = 'https://huggingface.co/posts'
53
  response = requests.get(url)
54
 
55
  if response.status_code == 200:
 
56
  soup = BeautifulSoup(response.content, 'html.parser')
57
  pl7_elements = soup.find_all(class_='pl-7')
58
  pl7_texts = [element.text.strip() for element in pl7_elements]
59
 
60
- for idx, text in enumerate(pl7_texts, start=1):
61
- print(f"Text pl-7 {idx}: {text}")
 
62
  sentiment = analyze_sentiment(text)
63
- print(f"Sentiment: {sentiment}\n")
64
 
65
- if len(pl7_texts) >= 4:
66
- print(f"Content of pl7_text_1: {pl7_texts[0]}")
67
- print(f"Content of pl7_text_2: {pl7_texts[1]}")
68
- else:
69
- print("Not enough pl-7 elements found")
70
  else:
71
  print(f"Error {response.status_code} when retrieving {url}")
 
1
  import os
2
  import requests
3
+ from collections import Counter
 
4
 
5
  api_token = os.environ.get("TOKEN")
6
+ API_URL = "https://api-inference.huggingface.co/models/meta-llama/Llama-2-7b-chat-hf"
7
  headers = {"Authorization": f"Bearer {api_token}"}
8
 
9
  def query(payload):
 
12
 
13
  def analyze_sentiment(pl7_texts):
14
  output = query({
15
+ "inputs": f'''<s>[INST] <<SYS>>
 
16
  You're going to deeply analyze the texts I'm going to give you and you're only going to tell me which category they belong to by answering only the words that correspond to the following categories:
17
  For posts that talk about chat models/LLM, return "Chatmodel/LLM"
18
  For posts that talk about image generation models, return "image_generation"
 
24
  For posts containing tutorials and guides, return "tutorials_guides"
25
  For posts about debugging and problem-solving, return "debugging"
26
  Respond only with the category name, without any additional explanation or text.
27
+ <</SYS>>
28
+
29
+ Analyze the following text:
30
  {pl7_texts}
31
+ [/INST]
 
32
  '''
33
  })
34
+
35
+ if isinstance(output, list) and len(output) > 0 and 'generated_text' in output[0]:
36
+ return output[0]['generated_text'].strip().lower()
37
+ return "unknown"
 
 
 
 
 
 
 
 
 
 
 
38
 
39
  url = 'https://huggingface.co/posts'
40
  response = requests.get(url)
41
 
42
  if response.status_code == 200:
43
+ from bs4 import BeautifulSoup
44
  soup = BeautifulSoup(response.content, 'html.parser')
45
  pl7_elements = soup.find_all(class_='pl-7')
46
  pl7_texts = [element.text.strip() for element in pl7_elements]
47
 
48
+ sentiment_counter = Counter()
49
+
50
+ for text in pl7_texts:
51
  sentiment = analyze_sentiment(text)
52
+ sentiment_counter[sentiment] += 1
53
 
54
+ for category, count in sentiment_counter.items():
55
+ print(f"{category} = {count}")
 
 
 
56
  else:
57
  print(f"Error {response.status_code} when retrieving {url}")