Spaces:
Sleeping
Sleeping
File size: 4,982 Bytes
e5bb95a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
# -*- coding: utf-8 -*-
"""демо.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1NK3gtM_1xpqJt79c_lDgu45FY4aMd3kr
"""
from huggingface_hub import hf_hub_download
# Загрузка файла конфигурации и модели
config_path = hf_hub_download(repo_id="alexakup05/eye_disease_classifier", filename="config.json")
model_path = hf_hub_download(repo_id="alexakup05/eye_disease_classifier", filename="model1.pth")
print(f"Модель и конфигурация загружены: {config_path}, {model_path}")
import json
# Загружаем конфигурацию
with open(config_path, 'r') as f:
config = json.load(f)
print(config) # Проверим содержимое конфигурации
import torch
import torch.nn as nn
from torchvision import models
class EyeDiseaseEfficientNet(nn.Module):
def __init__(self, config):
super(EyeDiseaseEfficientNet, self).__init__()
self.efficientnet = models.efficientnet_b4(pretrained=False)
self.efficientnet.classifier = nn.Identity()
self.fc_age_sex = nn.Sequential(
nn.Linear(2, 64),
nn.ReLU(),
nn.Dropout(0.5)
)
self.fc_combined = nn.Sequential(
nn.Linear(1792 + 64, 512),
nn.ReLU(),
nn.Dropout(0.6),
nn.Linear(512, 8)
)
def forward(self, x_img, x_age_sex):
x_img = self.efficientnet(x_img)
x_age_sex = self.fc_age_sex(x_age_sex)
x = torch.cat((x_img, x_age_sex), dim=1)
x = self.fc_combined(x)
return x
model = EyeDiseaseEfficientNet(config)
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
device = torch.device("cpu")
model = model.to(device)
model.eval()
input_image = torch.randn(1, 3, 224, 224).to(device)
input_age_sex = torch.tensor([[45, 1]], dtype=torch.float32).to(device)
with torch.no_grad():
output = model(input_image, input_age_sex)
print(output)
import torch.nn.functional as F
logits = torch.tensor([[-2.6384, -1.8599, 0.0206, 2.0523, 0.2476, 1.9363, 1.5297, -1.0108]], device='cpu')
probabilities = F.softmax(logits, dim=1)
predicted_class = torch.argmax(probabilities, dim=1)
print(f"Предсказанный класс: {predicted_class.item()}")
import gradio as gr
import cv2
import numpy as np
from PIL import Image
def detect_eye(img):
eye_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_eye.xml')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
eyes = eye_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
if len(eyes) > 0:
(x, y, w, h) = eyes[0]
img = img[y:y+h, x:x+w]
return img
def preprocess_image(img):
img = cv2.medianBlur(img, 3)
lab = cv2.cvtColor(img, cv2.COLOR_BGR2LAB)
l, a, b = cv2.split(lab)
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
l = clahe.apply(l)
lab = cv2.merge((l, a, b))
img = cv2.cvtColor(lab, cv2.COLOR_LAB2BGR)
return img
def resize_with_padding(img, target_size=(224, 224)):
h, w = img.shape[:2]
scale = min(target_size[0] / h, target_size[1] / w)
new_w, new_h = int(w * scale), int(h * scale)
resized_img = cv2.resize(img, (new_w, new_h), interpolation=cv2.INTER_AREA)
pad_w = (target_size[1] - new_w) // 2
pad_h = (target_size[0] - new_h) // 2
padded_img = cv2.copyMakeBorder(
resized_img, pad_h, target_size[0] - new_h - pad_h, pad_w, target_size[1] - new_w - pad_w,
cv2.BORDER_CONSTANT, value=[0, 0, 0]
)
return padded_img
def predict(age, sex, img):
img = detect_eye(img)
img = preprocess_image(img)
img = resize_with_padding(img)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = Image.fromarray(img)
img_tensor = torch.tensor(np.array(img)).permute(2, 0, 1).unsqueeze(0).float()
age_sex_tensor = torch.tensor([[age, 0 if sex == "Male" else 1]]).float()
with torch.no_grad():
outputs = model(img_tensor, age_sex_tensor)
probabilities = torch.softmax(outputs, dim=1).cpu().numpy()[0]
disease_labels = [
"Normal",
"Diabetic Retinopathy",
"Glaucoma",
"Cataract",
"Age-related Macular Degeneration",
"Hypertension",
"Pathological Myopia",
"Other Diseases/Abnormalities"
]
result = {disease_labels[i]: f"{probabilities[i]*100:.2f}%" for i in range(len(disease_labels))}
return result, img
examples = [
[30, "Male", "myopia.png"]
]
iface = gr.Interface(
fn=predict,
inputs=[
gr.Slider(minimum=0, maximum=100, step=1, label="Age"),
gr.Radio(["Male", "Female"], label="Gener"),
gr.Image(type="numpy", label="Upload Eye Image/ your Selfies / photo")
],
outputs=[gr.JSON(label="Predictions"), gr.Image(label="Processed Image")],
examples=examples
)
iface.launch()
|