File size: 8,858 Bytes
50bd1fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b265c62
 
 
 
 
 
 
 
 
 
50bd1fc
 
b265c62
 
 
 
 
50bd1fc
b265c62
50bd1fc
b265c62
 
50bd1fc
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import argparse

import torch
import wandb
from torch import nn, optim
from torch.nn.functional import cosine_similarity
from torch.optim import lr_scheduler
from torch.utils.data import DataLoader
from tqdm import tqdm
from typing_extensions import Optional

from src.dataset import RandomAugmentedDataset, get_byol_transforms
from src.models import BYOL


def get_data_loaders(
        batch_size: int,
        num_train_samples: int,
        num_val_samples: int,
        shape_params: Optional[dict] = None,
        num_workers: int = 0
):
    augmentations = get_byol_transforms()

    train_dataset = RandomAugmentedDataset(
        augmentations,
        shape_params,
        num_samples=num_train_samples,
        train=True
    )
    val_dataset = RandomAugmentedDataset(
        augmentations,
        shape_params,
        num_samples=num_val_samples,
        train=False
    )

    train_loader = DataLoader(
        train_dataset,
        batch_size=batch_size,
        shuffle=True,
        num_workers=num_workers
    )
    val_loader = DataLoader(
        val_dataset,
        batch_size=batch_size,
        shuffle=False,
        num_workers=num_workers
    )

    return train_loader, val_loader


def build_model(lr: float):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model = BYOL().to(device)

    optimizer = optim.Adam(
        list(model.online_network.parameters()) + list(model.online_predictor.parameters()),
        lr=lr
    )
    scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', factor=0.1, patience=2)

    return model, optimizer, scheduler, device


def train_epoch(
        model: nn.Module,
        optimizer: optim.Optimizer,
        train_loader: DataLoader,
        device: torch.device
) -> dict:
    model.train()
    running_train_loss = 0.0
    total_cos_sim, total_l2_dist, total_feat_norm, total_grad_norm = 0.0, 0.0, 0.0, 0.0
    num_train_batches = 0

    for (view_1, view_2) in tqdm(train_loader, desc="Training"):
        view_1 = view_1.to(device)
        view_2 = view_2.to(device)

        loss = model.loss(view_1, view_2)

        optimizer.zero_grad()
        loss.backward()

        with torch.no_grad():
            online_proj1, target_proj1 = model(view_1)
            online_proj2, target_proj2 = model(view_2)

            cos_sim = cosine_similarity(online_proj1, target_proj2).mean().item()
            l2_dist = torch.norm(online_proj1 - target_proj2, dim=-1).mean().item()
            feat_norm = torch.norm(online_proj1, dim=-1).mean().item()

            grad_norm = torch.norm(
                torch.cat([
                    p.grad.flatten()
                    for p in model.online_network.parameters()
                    if p.grad is not None
                ])
            ).item()

            total_cos_sim += cos_sim
            total_l2_dist += l2_dist
            total_feat_norm += feat_norm
            total_grad_norm += grad_norm

        optimizer.step()
        model.soft_update_target_network()

        running_train_loss += loss.item()
        num_train_batches += 1

    train_loss = running_train_loss / num_train_batches
    train_cos_sim = total_cos_sim / num_train_batches
    train_l2_dist = total_l2_dist / num_train_batches
    train_feat_norm = total_feat_norm / num_train_batches
    train_grad_norm = total_grad_norm / num_train_batches

    return {
        "loss": train_loss,
        "cos_sim": train_cos_sim,
        "l2_dist": train_l2_dist,
        "feat_norm": train_feat_norm,
        "grad_norm": train_grad_norm,
    }


@torch.no_grad()
def validate(
        model: nn.Module,
        val_loader: DataLoader,
        device: torch.device
) -> dict:
    model.eval()
    running_val_loss = 0.0
    total_cos_sim, total_l2_dist, total_feat_norm = 0.0, 0.0, 0.0
    num_val_batches = 0

    for (view_1, view_2) in tqdm(val_loader, desc="Validation"):
        view_1 = view_1.to(device)
        view_2 = view_2.to(device)

        loss = model.loss(view_1, view_2)
        running_val_loss += loss.item()

        online_proj1, target_proj1 = model(view_1)
        online_proj2, target_proj2 = model(view_2)

        cos_sim = cosine_similarity(online_proj1, target_proj2).mean().item()
        l2_dist = torch.norm(online_proj1 - target_proj2, dim=-1).mean().item()
        feat_norm = torch.norm(online_proj1, dim=-1).mean().item()

        total_cos_sim += cos_sim
        total_l2_dist += l2_dist
        total_feat_norm += feat_norm
        num_val_batches += 1

    val_loss = running_val_loss / num_val_batches
    val_cos_sim = total_cos_sim / num_val_batches
    val_l2_dist = total_l2_dist / num_val_batches
    val_feat_norm = total_feat_norm / num_val_batches

    return {
        "loss": val_loss,
        "cos_sim": val_cos_sim,
        "l2_dist": val_l2_dist,
        "feat_norm": val_feat_norm
    }


def train(
        model: nn.Module,
        optimizer: optim.Optimizer,
        scheduler,
        device: torch.device,
        train_loader: DataLoader,
        val_loader: DataLoader,
        num_epochs: int,
        early_stopping_patience: int = 3,
        save_path: str = "best_byol.pth"
):
    best_loss = float("inf")
    epochs_no_improve = 0
    print("Start training...")

    for epoch in range(num_epochs):
        print(f"Epoch {epoch + 1}/{num_epochs}")

        train_metrics = train_epoch(model, optimizer, train_loader, device)

        val_metrics = validate(model, val_loader, device)

        wandb.log({
            "epoch": epoch + 1,
            "train_loss": train_metrics["loss"],
            "train_cos_sim": train_metrics["cos_sim"],
            "train_l2_dist": train_metrics["l2_dist"],
            "train_feat_norm": train_metrics["feat_norm"],
            "train_grad_norm": train_metrics["grad_norm"],
            "val_loss": val_metrics["loss"],
            "val_cos_sim": val_metrics["cos_sim"],
            "val_l2_dist": val_metrics["l2_dist"],
            "val_feat_norm": val_metrics["feat_norm"],
        })

        print(
            f"Train Loss: {train_metrics['loss']:.4f} | "
            f"CosSim: {train_metrics['cos_sim']:.4f} | "
            f"L2Dist: {train_metrics['l2_dist']:.4f}"
        )
        print(
            f"Val Loss: {val_metrics['loss']:.4f} | "
            f"CosSim: {val_metrics['cos_sim']:.4f} | "
            f"L2Dist: {val_metrics['l2_dist']:.4f}"
        )

        current_val_loss = val_metrics["loss"]
        if current_val_loss < best_loss or val_metrics['cos_sim'] >= 0.86:
            best_loss = current_val_loss
            encoder_state_dict = model.online_network.encoder.state_dict()
            torch.save(encoder_state_dict, save_path)
            epochs_no_improve = 0
        else:
            epochs_no_improve += 1

        scheduler.step(val_metrics["cos_sim"])

        if epochs_no_improve >= early_stopping_patience:
            print(f"Early stopping on epoch {epoch + 1}")
            break


def main(config: dict):
    wandb.init(project="contrastive_learning_byol", config=config)

    train_loader, val_loader = get_data_loaders(
        batch_size=config["batch_size"],
        num_train_samples=config["num_train_samples"],
        num_val_samples=config["num_val_samples"],
        shape_params=config["shape_params"]
    )

    model, optimizer, scheduler, device = build_model(
        lr=config["lr"]
    )

    train(
        model=model,
        optimizer=optimizer,
        scheduler=scheduler,
        device=device,
        train_loader=train_loader,
        val_loader=val_loader,
        num_epochs=config["num_epochs"],
        early_stopping_patience=config["early_stopping_patience"],
        save_path=config["save_path"]
    )

    wandb.finish()


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Train BYOL model")
    parser.add_argument("--batch_size", type=int, default=512)
    parser.add_argument("--lr", type=float, default=5e-4)
    parser.add_argument("--num_epochs", type=int, default=15)
    parser.add_argument("--num_train_samples", type=int, default=100000)
    parser.add_argument("--num_val_samples", type=int, default=10000)
    parser.add_argument("--random_intensity", type=int, default=1)
    parser.add_argument("--early_stopping_patience", type=int, default=3)
    parser.add_argument("--save_path", type=str, default="best_byol.pth")
    args = parser.parse_args()

    config = {
        "batch_size": args.batch_size,
        "lr": args.lr,
        "num_epochs": args.num_epochs,
        "num_train_samples": args.num_train_samples,
        "num_val_samples": args.num_val_samples,
        "shape_params": {
            "random_intensity": bool(args.random_intensity)
        },
        "early_stopping_patience": args.early_stopping_patience,
        "save_path": args.save_path
    }

    main(config)