File size: 14,045 Bytes
68306ab
 
 
8823f71
 
68306ab
 
8823f71
a9322d5
8823f71
68306ab
 
 
8823f71
68306ab
8823f71
68306ab
8823f71
68306ab
8823f71
 
 
68306ab
 
8823f71
68306ab
 
 
a9322d5
 
8823f71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
beb956c
8823f71
 
beb956c
8823f71
 
 
 
 
 
 
 
 
beb956c
8823f71
a9322d5
 
beb956c
a9322d5
 
 
 
 
 
 
 
 
 
 
 
caa5a3e
 
 
a9322d5
8823f71
 
 
 
 
 
 
 
 
 
 
 
 
 
68306ab
8823f71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9322d5
8823f71
68306ab
8823f71
 
 
 
 
 
a9322d5
 
8823f71
68306ab
 
 
 
 
8823f71
 
 
 
 
 
 
 
 
 
 
 
68306ab
 
 
 
 
 
 
 
8823f71
 
beb956c
 
68306ab
 
8823f71
 
 
 
68306ab
 
 
1cf6856
 
 
 
 
 
68306ab
 
 
 
 
 
 
 
 
 
 
 
8823f71
 
 
 
68306ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8823f71
 
 
 
 
 
 
 
68306ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8823f71
68306ab
 
 
 
 
 
 
8823f71
68306ab
 
 
 
 
 
 
 
8823f71
68306ab
 
 
 
 
 
 
8823f71
68306ab
 
8823f71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9322d5
 
 
 
 
 
68306ab
8823f71
68306ab
 
 
 
 
 
 
 
 
 
8823f71
68306ab
 
8823f71
 
 
 
 
 
 
 
a9322d5
 
68306ab
8823f71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68306ab
 
a9322d5
 
 
 
 
 
68306ab
8823f71
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
import gradio as gr
import numpy as np
import random
from PIL import Image
from rembg import remove

# import spaces #[uncomment to use ZeroGPU]
from peft import PeftModel
from diffusers import DiffusionPipeline, StableDiffusionPipeline, ControlNetModel, StableDiffusionControlNetPipeline, AutoencoderTiny, DDIMScheduler
from diffusers.utils import load_image
import torch

device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "CompVis/stable-diffusion-v1-4"  # Replace to the model you would like to use

torch_dtype = torch.float16

pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
pipe = pipe.to(device)
# pipe.unet = PeftModel.from_pretrained(pipe.unet, "alexanz/SD14_lora_pusheen")
pipe.safety_checker = None
pipe.requires_safety_checker = False

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 512


# @spaces.GPU #[uncomment to use ZeroGPU]
def load_model(model_id, lora_strength, use_controlnet=False, control_mode="edge_detection", use_ip_adapter=False, control_strength_ip=0.0,
               acceleration_mode=None):
    global pipe
    if pipe is not None:
        del pipe
        torch.cuda.empty_cache()
    try:
        if control_mode == "edge_detection" and (model_id == "CompVis/stable-diffusion-v1-4" or model_id == "alexanz/SD14_lora_pusheen"):
            controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch_dtype)
        elif control_mode == "pose_estimation"and (model_id == "CompVis/stable-diffusion-v1-4" or model_id == "alexanz/SD14_lora_pusheen"):
            controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose", torch_dtype=torch_dtype)
        if control_mode == "edge_detection" and (model_id == "alexanz/SD15_lora_pusheen"):
            controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_canny", torch_dtype=torch_dtype)
        elif control_mode == "pose_estimation"and (model_id == "alexanz/SD15_lora_pusheen"):
            controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_openpose", torch_dtype=torch_dtype)
    
        if model_id == "CompVis/stable-diffusion-v1-4":
            if use_controlnet:
                pipe = StableDiffusionControlNetPipeline.from_pretrained(
                    model_id,
                    safety_checker=None,
                    controlnet=controlnet,
                    torch_dtype=torch_dtype
                )
            else:
                pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype)

        elif model_id == "alexanz/SD14_lora_pusheen":
            if use_controlnet:
                pipe = StableDiffusionControlNetPipeline.from_pretrained(
                    "CompVis/stable-diffusion-v1-4",
                    safety_checker=None,
                    controlnet=controlnet,
                    torch_dtype=torch_dtype
                )
                pipe.unet = PeftModel.from_pretrained(pipe.unet, model_id, torch_dtype=torch_dtype)
            else:
                pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch_dtype)
                pipe.unet = PeftModel.from_pretrained(pipe.unet, model_id)

        elif model_id == "alexanz/SD15_lora_pusheen":
            if use_controlnet:
                pipe = StableDiffusionControlNetPipeline.from_pretrained(
                    "stable-diffusion-v1-5/stable-diffusion-v1-5",
                    safety_checker=None,
                    controlnet=controlnet,
                    torch_dtype=torch_dtype
                )
                pipe.unet = PeftModel.from_pretrained(pipe.unet, model_id, torch_dtype=torch_dtype)
            else:
                if acceleration_mode is None:
                    pipe = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch_dtype)
                    pipe.unet = PeftModel.from_pretrained(pipe.unet, model_id)
                elif acceleration_mode == "distilled":
                    pipe = StableDiffusionPipeline.from_pretrained(
                        "nota-ai/bk-sdm-small", torch_dtype=torch.float16, use_safetensors=True,
                    )
                elif acceleration_mode == "distilled + tiny":
                    pipe = StableDiffusionPipeline.from_pretrained(
                        "nota-ai/bk-sdm-small", torch_dtype=torch.float16, use_safetensors=True,
                    )
                    pipe.vae = AutoencoderTiny.from_pretrained(
                        "sayakpaul/taesd-diffusers", torch_dtype=torch.float16, use_safetensors=True,
                    )
                elif acceleration_mode == "DDIM":
                    scheduler = DDIMScheduler.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", subfolder="scheduler")
                    pipe = StableDiffusionPipeline.from_pretrained(
                        "stable-diffusion-v1-5/stable-diffusion-v1-5", scheduler=scheduler, torch_dtype=torch.float16
                    )

        if use_ip_adapter:
            pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin")
            pipe.set_ip_adapter_scale(control_strength_ip)

        pipe = pipe.to(device)
        pipe.safety_checker = None
        pipe.requires_safety_checker = False
        pipe.enable_model_cpu_offload()
        return f"Model {model_id} loaded with ControlNet: {use_controlnet}, mode: {control_mode}"
    except Exception as e:
        return f"Error: {str(e)}"


def infer(
        prompt,
        negative_prompt,
        seed,
        randomize_seed,
        width,
        height,
        lora_strength,
        guidance_scale,
        num_inference_steps,
        use_controlnet,
        control_image_cont,
        control_strength_cont,
        model_dropdown,
        control_mode,
        use_ip_adapter,
        control_strength_ip,
        control_image_ip,
        use_rmbg,
        acceleration_mode,
        progress=gr.Progress(track_tqdm=True),
):
    load_status = load_model(
        model_dropdown,
        lora_strength,
        use_controlnet,
        control_mode,
        use_ip_adapter,
        control_strength_ip,
        acceleration_mode
    )
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    if use_controlnet and control_image_cont is None:
        return None, seed, "⚠️ ControlNet need control_image!"
    
    if use_ip_adapter and control_image_ip is None:
        return None, seed, "⚠️ IP-adapter need control_image!"

    if use_controlnet:
        control_image_cont= Image.fromarray(control_image_cont)
        control_strength_cont = float(control_strength_cont)
    if use_ip_adapter:
        control_image_ip = Image.fromarray(control_image_ip)

    image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
        image=control_image_cont if use_controlnet else None,
        controlnet_conditioning_scale=control_strength_cont if use_controlnet else None,
        ip_adapter_image=control_image_ip if use_ip_adapter else None,
        cross_attention_kwargs={"scale": lora_strength}
    ).images[0]

    if use_rmbg:
        image = remove(image)

    return image, seed, "Model ready"


examples = [
    "Sticker of Pusheen. Gray cat holding a heart-shaped balloon, standing next to a Valentine’s card with 'You’re Pawesome' written in glitter.",
    "Gray cat holding a heart-shaped balloon, standing next to a Valentine’s card with 'You’re Pawesome' written in glitter.",
    "Sticker of Pusheen. Pusheen riding a shopping cart full of cupcakes.",
    "Sticker of Pusheen. A cat with droopy ears and a patched scarf, sitting on a park bench at dusk, holding a photo of another cat, with autumn leaves falling around it.",
    "Sticker of Pusheen. A cartoon grey cat asks for a fish in a word cloud.",
    "Sticker of Pusheen. Pusheen tangled in yarn, playful annoyed face."
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # Text-to-Image Gradio Template")
        model_dropdown = gr.Dropdown(label="Model ID",
                                     choices=["alexanz/SD14_lora_pusheen", "CompVis/stable-diffusion-v1-4", "alexanz/SD15_lora_pusheen"],
                                     value="CompVis/stable-diffusion-v1-4")
        model_status = gr.Textbox(label="Model Status", interactive=False)

        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button("Run", scale=0, variant="primary")

        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
            )

            lora_strength = gr.Slider(
                label="Lora strength",
                minimum=0.0,
                maximum=1.0,
                step=0.1,
                value=1.0,
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,  # Replace with defaults that work for your model
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,  # Replace with defaults that work for your model
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=7.5,  # Replace with defaults that work for your model
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=20,  # Replace with defaults that work for your model
                )

        use_controlnet = gr.Checkbox(label="Use ControlNet", value=False)
        with gr.Accordion("ControlNet Settings", open=True, visible=False) as controlnet_settings:
            control_mode = gr.Dropdown(
                label="ControlNet Mode",
                choices=["edge_detection", "pose_estimation"],
                value="edge_detection"
            )
            control_strength_cont = gr.Slider(
                label="Control Strength",
                minimum=0.0,
                maximum=2.0,
                step=0.1,
                value=1.0
            )
            control_image_cont = gr.Image(label="Control Image", type="numpy")

        use_ip_adapter = gr.Checkbox(label="Use IP-adapter", value=False)
        with gr.Accordion("IP-adapter Settings", open=True, visible=False) as ip_adapter_settings:
            control_strength_ip = gr.Slider(
                label="Control Strength",
                minimum=0.0,
                maximum=2.0,
                step=0.1,
                value=1.0
            )
            control_image_ip = gr.Image(label="Control Image (IP-adapter)", type="numpy")

        use_rmbg = gr.Checkbox(label="Delete background?", value=False)

        use_acceleration = gr.Checkbox(label="Use accelerate model? (only for 1.5 SD!)", value=False)
        with gr.Accordion("Acceleration Settings", open=True, visible=False) as acceleration_settings:
            acceleration_mode = gr.Dropdown(label="Acceleration mode",
                                            choices=["distilled", "distilled + tiny", "DDIM"],
                                            value=None)

        gr.Examples(examples=examples, inputs=[prompt])

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            width,
            height,
            lora_strength,
            guidance_scale,
            num_inference_steps,
            use_controlnet,
            control_image_cont,
            control_strength_cont,
            model_dropdown,
            control_mode,
            use_ip_adapter,
            control_strength_ip,
            control_image_ip,
            use_rmbg,
            acceleration_mode
        ],
        outputs=[result, seed, model_status],
    )

    use_controlnet.change(
        fn=lambda x: gr.update(visible=x, value=None),
        inputs=[use_controlnet],
        outputs=[controlnet_settings]
    )

    use_ip_adapter.change(
        fn=lambda x: gr.update(visible=x, value=None),
        inputs=[use_ip_adapter],
        outputs=[ip_adapter_settings]
    )

    use_rmbg.change(
        fn=lambda x: gr.update(visible=x, value=None),
        inputs=[use_rmbg]
    )

    use_acceleration.change(
        fn=lambda x: gr.update(visible=x, value=None),
        inputs=[use_acceleration],
        outputs=[acceleration_settings]
    )

if __name__ == "__main__":
    demo.launch()