Spaces:
Sleeping
Sleeping
File size: 14,045 Bytes
68306ab 8823f71 68306ab 8823f71 a9322d5 8823f71 68306ab 8823f71 68306ab 8823f71 68306ab 8823f71 68306ab 8823f71 68306ab 8823f71 68306ab a9322d5 8823f71 beb956c 8823f71 beb956c 8823f71 beb956c 8823f71 a9322d5 beb956c a9322d5 caa5a3e a9322d5 8823f71 68306ab 8823f71 a9322d5 8823f71 68306ab 8823f71 a9322d5 8823f71 68306ab 8823f71 68306ab 8823f71 beb956c 68306ab 8823f71 68306ab 1cf6856 68306ab 8823f71 68306ab 8823f71 68306ab 8823f71 68306ab 8823f71 68306ab 8823f71 68306ab 8823f71 68306ab 8823f71 a9322d5 68306ab 8823f71 68306ab 8823f71 68306ab 8823f71 a9322d5 68306ab 8823f71 68306ab a9322d5 68306ab 8823f71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
import gradio as gr
import numpy as np
import random
from PIL import Image
from rembg import remove
# import spaces #[uncomment to use ZeroGPU]
from peft import PeftModel
from diffusers import DiffusionPipeline, StableDiffusionPipeline, ControlNetModel, StableDiffusionControlNetPipeline, AutoencoderTiny, DDIMScheduler
from diffusers.utils import load_image
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "CompVis/stable-diffusion-v1-4" # Replace to the model you would like to use
torch_dtype = torch.float16
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
pipe = pipe.to(device)
# pipe.unet = PeftModel.from_pretrained(pipe.unet, "alexanz/SD14_lora_pusheen")
pipe.safety_checker = None
pipe.requires_safety_checker = False
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 512
# @spaces.GPU #[uncomment to use ZeroGPU]
def load_model(model_id, lora_strength, use_controlnet=False, control_mode="edge_detection", use_ip_adapter=False, control_strength_ip=0.0,
acceleration_mode=None):
global pipe
if pipe is not None:
del pipe
torch.cuda.empty_cache()
try:
if control_mode == "edge_detection" and (model_id == "CompVis/stable-diffusion-v1-4" or model_id == "alexanz/SD14_lora_pusheen"):
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch_dtype)
elif control_mode == "pose_estimation"and (model_id == "CompVis/stable-diffusion-v1-4" or model_id == "alexanz/SD14_lora_pusheen"):
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose", torch_dtype=torch_dtype)
if control_mode == "edge_detection" and (model_id == "alexanz/SD15_lora_pusheen"):
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_canny", torch_dtype=torch_dtype)
elif control_mode == "pose_estimation"and (model_id == "alexanz/SD15_lora_pusheen"):
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_openpose", torch_dtype=torch_dtype)
if model_id == "CompVis/stable-diffusion-v1-4":
if use_controlnet:
pipe = StableDiffusionControlNetPipeline.from_pretrained(
model_id,
safety_checker=None,
controlnet=controlnet,
torch_dtype=torch_dtype
)
else:
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype)
elif model_id == "alexanz/SD14_lora_pusheen":
if use_controlnet:
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
safety_checker=None,
controlnet=controlnet,
torch_dtype=torch_dtype
)
pipe.unet = PeftModel.from_pretrained(pipe.unet, model_id, torch_dtype=torch_dtype)
else:
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch_dtype)
pipe.unet = PeftModel.from_pretrained(pipe.unet, model_id)
elif model_id == "alexanz/SD15_lora_pusheen":
if use_controlnet:
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5",
safety_checker=None,
controlnet=controlnet,
torch_dtype=torch_dtype
)
pipe.unet = PeftModel.from_pretrained(pipe.unet, model_id, torch_dtype=torch_dtype)
else:
if acceleration_mode is None:
pipe = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch_dtype)
pipe.unet = PeftModel.from_pretrained(pipe.unet, model_id)
elif acceleration_mode == "distilled":
pipe = StableDiffusionPipeline.from_pretrained(
"nota-ai/bk-sdm-small", torch_dtype=torch.float16, use_safetensors=True,
)
elif acceleration_mode == "distilled + tiny":
pipe = StableDiffusionPipeline.from_pretrained(
"nota-ai/bk-sdm-small", torch_dtype=torch.float16, use_safetensors=True,
)
pipe.vae = AutoencoderTiny.from_pretrained(
"sayakpaul/taesd-diffusers", torch_dtype=torch.float16, use_safetensors=True,
)
elif acceleration_mode == "DDIM":
scheduler = DDIMScheduler.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", subfolder="scheduler")
pipe = StableDiffusionPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5", scheduler=scheduler, torch_dtype=torch.float16
)
if use_ip_adapter:
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin")
pipe.set_ip_adapter_scale(control_strength_ip)
pipe = pipe.to(device)
pipe.safety_checker = None
pipe.requires_safety_checker = False
pipe.enable_model_cpu_offload()
return f"Model {model_id} loaded with ControlNet: {use_controlnet}, mode: {control_mode}"
except Exception as e:
return f"Error: {str(e)}"
def infer(
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
lora_strength,
guidance_scale,
num_inference_steps,
use_controlnet,
control_image_cont,
control_strength_cont,
model_dropdown,
control_mode,
use_ip_adapter,
control_strength_ip,
control_image_ip,
use_rmbg,
acceleration_mode,
progress=gr.Progress(track_tqdm=True),
):
load_status = load_model(
model_dropdown,
lora_strength,
use_controlnet,
control_mode,
use_ip_adapter,
control_strength_ip,
acceleration_mode
)
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
if use_controlnet and control_image_cont is None:
return None, seed, "⚠️ ControlNet need control_image!"
if use_ip_adapter and control_image_ip is None:
return None, seed, "⚠️ IP-adapter need control_image!"
if use_controlnet:
control_image_cont= Image.fromarray(control_image_cont)
control_strength_cont = float(control_strength_cont)
if use_ip_adapter:
control_image_ip = Image.fromarray(control_image_ip)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
image=control_image_cont if use_controlnet else None,
controlnet_conditioning_scale=control_strength_cont if use_controlnet else None,
ip_adapter_image=control_image_ip if use_ip_adapter else None,
cross_attention_kwargs={"scale": lora_strength}
).images[0]
if use_rmbg:
image = remove(image)
return image, seed, "Model ready"
examples = [
"Sticker of Pusheen. Gray cat holding a heart-shaped balloon, standing next to a Valentine’s card with 'You’re Pawesome' written in glitter.",
"Gray cat holding a heart-shaped balloon, standing next to a Valentine’s card with 'You’re Pawesome' written in glitter.",
"Sticker of Pusheen. Pusheen riding a shopping cart full of cupcakes.",
"Sticker of Pusheen. A cat with droopy ears and a patched scarf, sitting on a park bench at dusk, holding a photo of another cat, with autumn leaves falling around it.",
"Sticker of Pusheen. A cartoon grey cat asks for a fish in a word cloud.",
"Sticker of Pusheen. Pusheen tangled in yarn, playful annoyed face."
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # Text-to-Image Gradio Template")
model_dropdown = gr.Dropdown(label="Model ID",
choices=["alexanz/SD14_lora_pusheen", "CompVis/stable-diffusion-v1-4", "alexanz/SD15_lora_pusheen"],
value="CompVis/stable-diffusion-v1-4")
model_status = gr.Textbox(label="Model Status", interactive=False)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
)
lora_strength = gr.Slider(
label="Lora strength",
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512, # Replace with defaults that work for your model
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512, # Replace with defaults that work for your model
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=7.5, # Replace with defaults that work for your model
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=20, # Replace with defaults that work for your model
)
use_controlnet = gr.Checkbox(label="Use ControlNet", value=False)
with gr.Accordion("ControlNet Settings", open=True, visible=False) as controlnet_settings:
control_mode = gr.Dropdown(
label="ControlNet Mode",
choices=["edge_detection", "pose_estimation"],
value="edge_detection"
)
control_strength_cont = gr.Slider(
label="Control Strength",
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.0
)
control_image_cont = gr.Image(label="Control Image", type="numpy")
use_ip_adapter = gr.Checkbox(label="Use IP-adapter", value=False)
with gr.Accordion("IP-adapter Settings", open=True, visible=False) as ip_adapter_settings:
control_strength_ip = gr.Slider(
label="Control Strength",
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.0
)
control_image_ip = gr.Image(label="Control Image (IP-adapter)", type="numpy")
use_rmbg = gr.Checkbox(label="Delete background?", value=False)
use_acceleration = gr.Checkbox(label="Use accelerate model? (only for 1.5 SD!)", value=False)
with gr.Accordion("Acceleration Settings", open=True, visible=False) as acceleration_settings:
acceleration_mode = gr.Dropdown(label="Acceleration mode",
choices=["distilled", "distilled + tiny", "DDIM"],
value=None)
gr.Examples(examples=examples, inputs=[prompt])
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
lora_strength,
guidance_scale,
num_inference_steps,
use_controlnet,
control_image_cont,
control_strength_cont,
model_dropdown,
control_mode,
use_ip_adapter,
control_strength_ip,
control_image_ip,
use_rmbg,
acceleration_mode
],
outputs=[result, seed, model_status],
)
use_controlnet.change(
fn=lambda x: gr.update(visible=x, value=None),
inputs=[use_controlnet],
outputs=[controlnet_settings]
)
use_ip_adapter.change(
fn=lambda x: gr.update(visible=x, value=None),
inputs=[use_ip_adapter],
outputs=[ip_adapter_settings]
)
use_rmbg.change(
fn=lambda x: gr.update(visible=x, value=None),
inputs=[use_rmbg]
)
use_acceleration.change(
fn=lambda x: gr.update(visible=x, value=None),
inputs=[use_acceleration],
outputs=[acceleration_settings]
)
if __name__ == "__main__":
demo.launch() |