import gradio as gr import numpy as np import random from PIL import Image from rembg import remove # import spaces #[uncomment to use ZeroGPU] from peft import PeftModel from diffusers import DiffusionPipeline, StableDiffusionPipeline, ControlNetModel, StableDiffusionControlNetPipeline, AutoencoderTiny, DDIMScheduler from diffusers.utils import load_image import torch device = "cuda" if torch.cuda.is_available() else "cpu" model_repo_id = "CompVis/stable-diffusion-v1-4" # Replace to the model you would like to use torch_dtype = torch.float16 pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4") pipe = pipe.to(device) # pipe.unet = PeftModel.from_pretrained(pipe.unet, "alexanz/SD14_lora_pusheen") pipe.safety_checker = None pipe.requires_safety_checker = False MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 512 # @spaces.GPU #[uncomment to use ZeroGPU] def load_model(model_id, lora_strength, use_controlnet=False, control_mode="edge_detection", use_ip_adapter=False, control_strength_ip=0.0, acceleration_mode=None): global pipe if pipe is not None: del pipe torch.cuda.empty_cache() try: if control_mode == "edge_detection" and (model_id == "CompVis/stable-diffusion-v1-4" or model_id == "alexanz/SD14_lora_pusheen"): controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch_dtype) elif control_mode == "pose_estimation"and (model_id == "CompVis/stable-diffusion-v1-4" or model_id == "alexanz/SD14_lora_pusheen"): controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose", torch_dtype=torch_dtype) if control_mode == "edge_detection" and (model_id == "alexanz/SD15_lora_pusheen"): controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_canny", torch_dtype=torch_dtype) elif control_mode == "pose_estimation"and (model_id == "alexanz/SD15_lora_pusheen"): controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_openpose", torch_dtype=torch_dtype) if model_id == "CompVis/stable-diffusion-v1-4": if use_controlnet: pipe = StableDiffusionControlNetPipeline.from_pretrained( model_id, safety_checker=None, controlnet=controlnet, torch_dtype=torch_dtype ) else: pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype) elif model_id == "alexanz/SD14_lora_pusheen": if use_controlnet: pipe = StableDiffusionControlNetPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", safety_checker=None, controlnet=controlnet, torch_dtype=torch_dtype ) pipe.unet = PeftModel.from_pretrained(pipe.unet, model_id, torch_dtype=torch_dtype) else: pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch_dtype) pipe.unet = PeftModel.from_pretrained(pipe.unet, model_id) elif model_id == "alexanz/SD15_lora_pusheen": if use_controlnet: pipe = StableDiffusionControlNetPipeline.from_pretrained( "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet, torch_dtype=torch_dtype ) pipe.unet = PeftModel.from_pretrained(pipe.unet, model_id, torch_dtype=torch_dtype) else: if acceleration_mode is None: pipe = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch_dtype) pipe.unet = PeftModel.from_pretrained(pipe.unet, model_id) elif acceleration_mode == "distilled": pipe = StableDiffusionPipeline.from_pretrained( "nota-ai/bk-sdm-small", torch_dtype=torch.float16, use_safetensors=True, ) elif acceleration_mode == "distilled + tiny": pipe = StableDiffusionPipeline.from_pretrained( "nota-ai/bk-sdm-small", torch_dtype=torch.float16, use_safetensors=True, ) pipe.vae = AutoencoderTiny.from_pretrained( "sayakpaul/taesd-diffusers", torch_dtype=torch.float16, use_safetensors=True, ) elif acceleration_mode == "DDIM": scheduler = DDIMScheduler.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", subfolder="scheduler") pipe = StableDiffusionPipeline.from_pretrained( "stable-diffusion-v1-5/stable-diffusion-v1-5", scheduler=scheduler, torch_dtype=torch.float16 ) if use_ip_adapter: pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin") pipe.set_ip_adapter_scale(control_strength_ip) pipe = pipe.to(device) pipe.safety_checker = None pipe.requires_safety_checker = False pipe.enable_model_cpu_offload() return f"Model {model_id} loaded with ControlNet: {use_controlnet}, mode: {control_mode}" except Exception as e: return f"Error: {str(e)}" def infer( prompt, negative_prompt, seed, randomize_seed, width, height, lora_strength, guidance_scale, num_inference_steps, use_controlnet, control_image_cont, control_strength_cont, model_dropdown, control_mode, use_ip_adapter, control_strength_ip, control_image_ip, use_rmbg, acceleration_mode, progress=gr.Progress(track_tqdm=True), ): load_status = load_model( model_dropdown, lora_strength, use_controlnet, control_mode, use_ip_adapter, control_strength_ip, acceleration_mode ) if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) if use_controlnet and control_image_cont is None: return None, seed, "⚠️ ControlNet need control_image!" if use_ip_adapter and control_image_ip is None: return None, seed, "⚠️ IP-adapter need control_image!" if use_controlnet: control_image_cont= Image.fromarray(control_image_cont) control_strength_cont = float(control_strength_cont) if use_ip_adapter: control_image_ip = Image.fromarray(control_image_ip) image = pipe( prompt=prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator, image=control_image_cont if use_controlnet else None, controlnet_conditioning_scale=control_strength_cont if use_controlnet else None, ip_adapter_image=control_image_ip if use_ip_adapter else None, cross_attention_kwargs={"scale": lora_strength} ).images[0] if use_rmbg: image = remove(image) return image, seed, "Model ready" examples = [ "Sticker of Pusheen. Gray cat holding a heart-shaped balloon, standing next to a Valentine’s card with 'You’re Pawesome' written in glitter.", "Gray cat holding a heart-shaped balloon, standing next to a Valentine’s card with 'You’re Pawesome' written in glitter.", "Sticker of Pusheen. Pusheen riding a shopping cart full of cupcakes.", "Sticker of Pusheen. A cat with droopy ears and a patched scarf, sitting on a park bench at dusk, holding a photo of another cat, with autumn leaves falling around it.", "Sticker of Pusheen. A cartoon grey cat asks for a fish in a word cloud.", "Sticker of Pusheen. Pusheen tangled in yarn, playful annoyed face." ] css = """ #col-container { margin: 0 auto; max-width: 640px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(" # Text-to-Image Gradio Template") model_dropdown = gr.Dropdown(label="Model ID", choices=["alexanz/SD14_lora_pusheen", "CompVis/stable-diffusion-v1-4", "alexanz/SD15_lora_pusheen"], value="CompVis/stable-diffusion-v1-4") model_status = gr.Textbox(label="Model Status", interactive=False) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0, variant="primary") result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", ) lora_strength = gr.Slider( label="Lora strength", minimum=0.0, maximum=1.0, step=0.1, value=1.0, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, # Replace with defaults that work for your model ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, # Replace with defaults that work for your model ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=7.5, # Replace with defaults that work for your model ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=20, # Replace with defaults that work for your model ) use_controlnet = gr.Checkbox(label="Use ControlNet", value=False) with gr.Accordion("ControlNet Settings", open=True, visible=False) as controlnet_settings: control_mode = gr.Dropdown( label="ControlNet Mode", choices=["edge_detection", "pose_estimation"], value="edge_detection" ) control_strength_cont = gr.Slider( label="Control Strength", minimum=0.0, maximum=2.0, step=0.1, value=1.0 ) control_image_cont = gr.Image(label="Control Image", type="numpy") use_ip_adapter = gr.Checkbox(label="Use IP-adapter", value=False) with gr.Accordion("IP-adapter Settings", open=True, visible=False) as ip_adapter_settings: control_strength_ip = gr.Slider( label="Control Strength", minimum=0.0, maximum=2.0, step=0.1, value=1.0 ) control_image_ip = gr.Image(label="Control Image (IP-adapter)", type="numpy") use_rmbg = gr.Checkbox(label="Delete background?", value=False) use_acceleration = gr.Checkbox(label="Use accelerate model? (only for 1.5 SD!)", value=False) with gr.Accordion("Acceleration Settings", open=True, visible=False) as acceleration_settings: acceleration_mode = gr.Dropdown(label="Acceleration mode", choices=["distilled", "distilled + tiny", "DDIM"], value=None) gr.Examples(examples=examples, inputs=[prompt]) gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[ prompt, negative_prompt, seed, randomize_seed, width, height, lora_strength, guidance_scale, num_inference_steps, use_controlnet, control_image_cont, control_strength_cont, model_dropdown, control_mode, use_ip_adapter, control_strength_ip, control_image_ip, use_rmbg, acceleration_mode ], outputs=[result, seed, model_status], ) use_controlnet.change( fn=lambda x: gr.update(visible=x, value=None), inputs=[use_controlnet], outputs=[controlnet_settings] ) use_ip_adapter.change( fn=lambda x: gr.update(visible=x, value=None), inputs=[use_ip_adapter], outputs=[ip_adapter_settings] ) use_rmbg.change( fn=lambda x: gr.update(visible=x, value=None), inputs=[use_rmbg] ) use_acceleration.change( fn=lambda x: gr.update(visible=x, value=None), inputs=[use_acceleration], outputs=[acceleration_settings] ) if __name__ == "__main__": demo.launch()