Spaces:
Runtime error
Runtime error
File size: 7,538 Bytes
999c5c9 b7fd8e3 999c5c9 af39e20 999c5c9 b7fd8e3 999c5c9 b7fd8e3 999c5c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
"""
inference on single image for MaskRCNN (FROM DETECTRON) + DLC
two step, pretrained MaskRCNN, then DLC
"""
import cv2
import torch
import sys
sys.path.append("Repositories/DeepLabCut-live")
import deeplabcut as dlc
from dlclive import DLCLive, Processor
import matplotlib.pyplot as plt
import numpy as np
from tqdm import tqdm
import os
import shutil
import torchvision
from torchvision.transforms import transforms as transforms
import pickle
import detectron2
# import some common detectron2 utilities
from detectron2 import model_zoo
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog, DatasetCatalog
import cv2
COCO_INSTANCE_CATEGORY_NAMES = [
'__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign',
'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella', 'N/A', 'N/A',
'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket',
'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',
'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table',
'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book',
'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'
]
def Process_Crop(Crop, CropSize):
"""Crop image and pad, if too big, will scale down """
# import ipdb;ipdb.set_trace()
if Crop.shape[0] > CropSize[0] or Crop.shape[1] > CropSize[1]: #Crop is bigger, scale down
ScaleProportion = min(CropSize[0]/Crop.shape[0],CropSize[1]/Crop.shape[1])
width_scaled = int(Crop.shape[1] * ScaleProportion)
height_scaled = int(Crop.shape[0] * ScaleProportion)
Crop = cv2.resize(Crop, (width_scaled,height_scaled), interpolation=cv2.INTER_LINEAR) # resize image
# Points2D = {k:[v[0]*ScaleProportion,v[1]*ScaleProportion] for k,v in Points2D.items()}
else:
ScaleProportion = 1
if Crop.shape[0] %2 ==0:
#Shape is even number
YPadTop = int((CropSize[1] - Crop.shape[0])/2)
YPadBot = int((CropSize[1] - Crop.shape[0])/2)
else:
YPadTop = int( ((CropSize[1] - Crop.shape[0])/2)-0.5)
YPadBot = int(((CropSize[1] - Crop.shape[0])/2)+0.5)
##Padding:
if Crop.shape[1] %2 ==0:
#Shape is even number
XPadLeft = int((CropSize[0] - Crop.shape[1])/2)
XPadRight= int((CropSize[0] - Crop.shape[1])/2)
else:
XPadLeft = int(((CropSize[0] - Crop.shape[1])/2)-0.5)
XPadRight= int(((CropSize[0] - Crop.shape[1])/2)+0.5)
OutImage = cv2.copyMakeBorder(Crop, YPadTop,YPadBot,XPadLeft,XPadRight,cv2.BORDER_CONSTANT,value=[0,0,0])
return OutImage,ScaleProportion, YPadTop,XPadLeft
def DLCInference(Crop,dlc_liveObj,CropSize):
"""Inference for DLC"""
###Scale crop if image bigger than cropsize
# import ipdb;ipdb.set_trace()
if Crop.shape[0] > CropSize[0] or Crop.shape[1] > CropSize[1]: #Image bigger than crop size, scale down
ScaleRatio = min([CropSize[0]/Crop.shape[0], CropSize[1]/Crop.shape[1]])
ScaleWidth = round(Crop.shape[1] * ScaleRatio)
ScaleHeight = round(Crop.shape[0]*ScaleRatio)
resizedCrop = cv2.resize(Crop, (ScaleWidth,ScaleHeight), interpolation=cv2.INTER_LINEAR) # resize image
ScaleUpRatio = 1/ScaleRatio #ratio to scale keypoints back up to original
# import ipdb;ipdb.set_trace()
else:
resizedCrop = Crop
ScaleUpRatio = 1
# cv2.imwrite(filename="tempresize.jpg", img=resizedCrop)
# cv2.imwrite(filename="temp.jpg", img=Crop)
if dlc_liveObj.sess == None: #if first time, init
DLCPredict2D = dlc_liveObj.init_inference(resizedCrop)
DLCPredict2D= dlc_liveObj.get_pose(resizedCrop)
DLCPredict2D[:,0] = DLCPredict2D[:,0]*ScaleUpRatio
DLCPredict2D[:,1] = DLCPredict2D[:,1]*ScaleUpRatio
return DLCPredict2D
def VisualizeAll(frame, box, DLCPredict2D,ScaleBBox, imsize):
"""Visualize all stuff"""
colourList = [(0,255,255),(255,0 ,255),(128,0,128),(255,192,203),(255, 255, 0),(0, 0 , 255 ),(205,133,63),(0,255,0),(255,0,0)]
##Order: Lshoulder, Rshoulder, topKeel,botKeel,Tail,Beak,Nose,Leye,Reye
##Points:
PlotPoints = []
for x,point in enumerate(DLCPredict2D):
roundPoint = [round(point[0]+box[0]),round(point[1]+box[1])]
cv2.circle(frame,roundPoint,1,colourList[x], 5)
PlotPoints.append(roundPoint)
cv2.rectangle(frame,(round(box[0]),round(box[1])),(round(box[2]),round(box[3])),[0,0,255],3)
return frame, PlotPoints
def Inference(frame,predictor,dlc_liveObj,ScaleBBox=1,Dilate=5,DLCThreshold=0.3):
"""Loop through video for SAM, save framewise info"""
InferFrame = frame.copy()
outputs = predictor(InferFrame)["instances"].to("cpu")
CropSize = (320,320)
# import ipdb;ipdb.set_trace()
imsize = [frame.shape[1],frame.shape[0]]
BirdIndex = np.where(outputs.pred_classes.numpy() == 14)[0] #14 is ID for bird
BirdBBox = outputs.pred_boxes[BirdIndex].tensor.numpy()
# import ipdb;ipdb.set_trace()
BirdMasks = (outputs.pred_masks>0.7).numpy()[BirdIndex]
for x in range(BirdBBox.shape[0]):
# import ipdb;ipdb.set_trace()
bbox = list(BirdBBox[x])
Mask = BirdMasks[x]>0
Mask = np.array(Mask,dtype=np.uint8)
# show_anns(frame, Mask)
if Dilate > 0:
DilateKernel = np.ones((Dilate,Dilate),np.uint8)
Mask = cv2.dilate(Mask,DilateKernel,iterations = 3)
# import ipdb;ipdb.set_trace()
Mask = np.array(Mask,dtype=np.uint8)
Mask = Mask.reshape(imsize[1],imsize[0],1)
Crop = cv2.bitwise_and(InferFrame, InferFrame, mask=Mask)
# cv2.imwrite(filename="temp.jpg", img = Crop)
##change box to XYWH to scale up
bbox = [bbox[0],bbox[1],bbox[2]-bbox[0],bbox[3]-bbox[1]]
ScaleWidth = ((ScaleBBox * bbox[2])/2)-(bbox[2]/2)
ScaleHeight = ((ScaleBBox * bbox[3])/2)-(bbox[3]/2)
# import ipdb;ipdb.set_trace()
# BirdCrop = frame[round(bbox[1]):round(bbox[3]),round(bbox[0]):round(bbox[2])] #bbox is XYWH
x1 = round(bbox[0]-ScaleWidth) if round(bbox[0]-ScaleWidth)>0 else 0
y1 = round(bbox[1]-ScaleHeight)if round(bbox[1]-ScaleHeight)>0 else 0
x2 = round(bbox[0]+bbox[2]+ScaleWidth) if round(bbox[0]+bbox[2]+ScaleWidth) < imsize[0] else imsize[0]
y2 = round(bbox[1]+bbox[3]+ScaleHeight)if round(bbox[1]+bbox[3]+ScaleHeight) < imsize[1] else imsize[1]
bbox = [x1,y1,x2,y2]
BirdCrop = Crop[y1:y2,x1:x2] #bbox is XYWH
DLCPredict2D= DLCInference(BirdCrop,dlc_liveObj,CropSize)
frame, PlotPoints = VisualizeAll(frame, bbox, DLCPredict2D,ScaleBBox,imsize)
if BirdBBox.shape[0] == 0:
DLCPredict2D= DLCInference(InferFrame,dlc_liveObj,CropSize)
bbox = [0,0,0,0]
frame, PlotPoints = VisualizeAll(frame, bbox, DLCPredict2D,ScaleBBox,imsize)
return frame
|