Spaces:
Sleeping
Sleeping
File size: 1,079 Bytes
4f2e372 0015a1e 4f2e372 0015a1e 4f2e372 842f597 4f2e372 842f597 4f2e372 842f597 4f2e372 842f597 4f2e372 842f597 4f2e372 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import gradio as gr
from diffusers import DDPMPipeline
import torch
model = 'alexktrs/CumulusCloudsGenerator'
if torch.cuda.is_available():
device='cuda'
else:
device='cpu'
generator = DDPMPipeline.from_pretrained(model)
generator.to(device)
def generate(num_images, num_inference_steps):
images=[]
print(num_images)
if num_images==None:
num_images=1
num_images=int(num_images)
for i in range(num_images):
image = generator(num_inference_steps=num_inference_steps).images[0]
images.append(image)
return images
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# Generate Cumulus Clouds
""")
gallery=gr.Gallery(type="pil")
with gr.Row():
slider=gr.Slider(label='Inference Steps', minimum=1, maximum=100, step=1, value=20)
n=gr.Number(label='Number of Generated Images', minimum=1, maximum=4, value=2)
btn = gr.Button("Generate Clouds")
btn.click(fn=generate, inputs=[n, slider], outputs=gallery)
demo.launch() |