Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,6 +8,31 @@ from utils import *
|
|
| 8 |
from presets import *
|
| 9 |
from transformers import Trainer, TrainingArguments
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
######################################################################
|
| 13 |
#Modelle und Tokenizer
|
|
@@ -80,30 +105,6 @@ def trainieren_neu():
|
|
| 80 |
|
| 81 |
|
| 82 |
|
| 83 |
-
#####################################################
|
| 84 |
-
#Hilfsfunktionen für das training
|
| 85 |
-
#####################################################
|
| 86 |
-
#Datensets in den Tokenizer schieben...
|
| 87 |
-
def tokenize_function(examples):
|
| 88 |
-
return tokenizer(examples["text"])
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
#Funktion, die den gegebenen Text aus dem Datenset gruppiert
|
| 92 |
-
def group_texts(examples):
|
| 93 |
-
# Concatenate all texts.
|
| 94 |
-
concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}
|
| 95 |
-
total_length = len(concatenated_examples[list(examples.keys())[0]])
|
| 96 |
-
# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
|
| 97 |
-
# customize this part to your needs.
|
| 98 |
-
total_length = (total_length // block_size) * block_size
|
| 99 |
-
# Split by chunks of max_len.
|
| 100 |
-
result = {
|
| 101 |
-
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
|
| 102 |
-
for k, t in concatenated_examples.items()
|
| 103 |
-
}
|
| 104 |
-
result["labels"] = result["input_ids"].copy()
|
| 105 |
-
return result
|
| 106 |
-
|
| 107 |
|
| 108 |
|
| 109 |
|
|
|
|
| 8 |
from presets import *
|
| 9 |
from transformers import Trainer, TrainingArguments
|
| 10 |
|
| 11 |
+
#####################################################
|
| 12 |
+
#Hilfsfunktionen für das training
|
| 13 |
+
#####################################################
|
| 14 |
+
#Datensets in den Tokenizer schieben...
|
| 15 |
+
def tokenize_function(examples):
|
| 16 |
+
return tokenizer(examples["text"])
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
#Funktion, die den gegebenen Text aus dem Datenset gruppiert
|
| 20 |
+
def group_texts(examples):
|
| 21 |
+
# Concatenate all texts.
|
| 22 |
+
concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}
|
| 23 |
+
total_length = len(concatenated_examples[list(examples.keys())[0]])
|
| 24 |
+
# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
|
| 25 |
+
# customize this part to your needs.
|
| 26 |
+
total_length = (total_length // block_size) * block_size
|
| 27 |
+
# Split by chunks of max_len.
|
| 28 |
+
result = {
|
| 29 |
+
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
|
| 30 |
+
for k, t in concatenated_examples.items()
|
| 31 |
+
}
|
| 32 |
+
result["labels"] = result["input_ids"].copy()
|
| 33 |
+
return result
|
| 34 |
+
|
| 35 |
+
|
| 36 |
|
| 37 |
######################################################################
|
| 38 |
#Modelle und Tokenizer
|
|
|
|
| 105 |
|
| 106 |
|
| 107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
|
| 110 |
|