Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -83,12 +83,15 @@ def generate_response(prompt, model, tokenizer):
|
|
| 83 |
|
| 84 |
#Funktion, die der trainer braucht, um das Training zu evaluieren - mit einer Metrik
|
| 85 |
def compute_metrics(eval_pred):
|
|
|
|
| 86 |
logits, labels = eval_pred
|
| 87 |
predictions = np.argmax(logits, axis=-1)
|
| 88 |
#Call compute on metric to calculate the accuracy of your predictions.
|
| 89 |
#Before passing your predictions to compute, you need to convert the predictions to logits (remember all Transformers models return logits):
|
| 90 |
return metric.compute(predictions=predictions, references=labels)
|
| 91 |
|
|
|
|
|
|
|
| 92 |
#oder mit allen Metriken
|
| 93 |
def compute_metrics_alle(eval_pred):
|
| 94 |
metrics = ["accuracy", "recall", "precision", "f1"] #List of metrics to return
|
|
@@ -184,7 +187,12 @@ lm_datasets = tokenized_datasets.map(
|
|
| 184 |
batch_size=1000,
|
| 185 |
num_proc=4,
|
| 186 |
)
|
| 187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
#die Daten wurden nun "gereinigt" und für das Model vorbereitet.
|
| 189 |
#z.B. anschauen mit: tokenizer.decode(lm_datasets["train"][1]["input_ids"])
|
| 190 |
|
|
@@ -210,6 +218,8 @@ training_args = TrainingArguments(
|
|
| 210 |
overwrite_output_dir = 'True',
|
| 211 |
per_device_train_batch_size=batch_size, #batch_size = 2 for full training
|
| 212 |
per_device_eval_batch_size=batch_size,
|
|
|
|
|
|
|
| 213 |
evaluation_strategy = "epoch", #oder steps
|
| 214 |
logging_strategy="epoch", #oder steps
|
| 215 |
#logging_steps=10,
|
|
@@ -221,18 +231,20 @@ training_args = TrainingArguments(
|
|
| 221 |
#logging_steps=2, # set to 1000 for full training
|
| 222 |
#save_steps=16, # set to 500 for full training
|
| 223 |
#eval_steps=4, # set to 8000 for full training
|
| 224 |
-
|
| 225 |
#max_steps=16, # delete for full training
|
| 226 |
# overwrite_output_dir=True,
|
| 227 |
#save_total_limit=1,
|
| 228 |
#fp16=True,
|
| 229 |
-
|
| 230 |
optim="adamw_torch",
|
| 231 |
#load_best_model_at_end=False,
|
| 232 |
#load_best_model_at_end=True
|
| 233 |
#push_to_hub=True,
|
| 234 |
)
|
| 235 |
|
|
|
|
|
|
|
| 236 |
#Trainer zusammenstellen
|
| 237 |
print ("################################")
|
| 238 |
print ("trainer")
|
|
@@ -242,6 +254,7 @@ trainer = Trainer(
|
|
| 242 |
args=training_args,
|
| 243 |
train_dataset=lm_datasets["train"],
|
| 244 |
eval_dataset=lm_datasets["test"],
|
|
|
|
| 245 |
#tokenizer=tokenizer,
|
| 246 |
compute_metrics=compute_metrics,
|
| 247 |
)
|
|
@@ -324,6 +337,12 @@ print("Evaluate:")
|
|
| 324 |
trainer.evaluate(eval_dataset=lm_datasets["test"])
|
| 325 |
print("Done Eval")
|
| 326 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 327 |
###################################################
|
| 328 |
#Save to a place -????? Where????
|
| 329 |
#print("Save to ???")
|
|
@@ -334,7 +353,7 @@ print("Done Eval")
|
|
| 334 |
#####################################
|
| 335 |
#Push to Hub
|
| 336 |
print ("################################")
|
| 337 |
-
print("push to hub")
|
| 338 |
print("push to hub - Model")
|
| 339 |
login(token=os.environ["HF_WRITE_TOKEN"])
|
| 340 |
trainer.push_to_hub("alexkueck/li-tis-tuned-2")
|
|
|
|
| 83 |
|
| 84 |
#Funktion, die der trainer braucht, um das Training zu evaluieren - mit einer Metrik
|
| 85 |
def compute_metrics(eval_pred):
|
| 86 |
+
metric = evaluate.load("glue", "mrpc")
|
| 87 |
logits, labels = eval_pred
|
| 88 |
predictions = np.argmax(logits, axis=-1)
|
| 89 |
#Call compute on metric to calculate the accuracy of your predictions.
|
| 90 |
#Before passing your predictions to compute, you need to convert the predictions to logits (remember all Transformers models return logits):
|
| 91 |
return metric.compute(predictions=predictions, references=labels)
|
| 92 |
|
| 93 |
+
|
| 94 |
+
|
| 95 |
#oder mit allen Metriken
|
| 96 |
def compute_metrics_alle(eval_pred):
|
| 97 |
metrics = ["accuracy", "recall", "precision", "f1"] #List of metrics to return
|
|
|
|
| 187 |
batch_size=1000,
|
| 188 |
num_proc=4,
|
| 189 |
)
|
| 190 |
+
|
| 191 |
+
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
print ("###############lm datasets####################")
|
| 195 |
+
print (tokenizer.decode(lm_datasets["train"][1]["input_ids"])
|
| 196 |
#die Daten wurden nun "gereinigt" und für das Model vorbereitet.
|
| 197 |
#z.B. anschauen mit: tokenizer.decode(lm_datasets["train"][1]["input_ids"])
|
| 198 |
|
|
|
|
| 218 |
overwrite_output_dir = 'True',
|
| 219 |
per_device_train_batch_size=batch_size, #batch_size = 2 for full training
|
| 220 |
per_device_eval_batch_size=batch_size,
|
| 221 |
+
num_train_epochs=5,
|
| 222 |
+
logging_steps=5000,
|
| 223 |
evaluation_strategy = "epoch", #oder steps
|
| 224 |
logging_strategy="epoch", #oder steps
|
| 225 |
#logging_steps=10,
|
|
|
|
| 231 |
#logging_steps=2, # set to 1000 for full training
|
| 232 |
#save_steps=16, # set to 500 for full training
|
| 233 |
#eval_steps=4, # set to 8000 for full training
|
| 234 |
+
warmup_steps=100, # set to 2000 for full training
|
| 235 |
#max_steps=16, # delete for full training
|
| 236 |
# overwrite_output_dir=True,
|
| 237 |
#save_total_limit=1,
|
| 238 |
#fp16=True,
|
| 239 |
+
save_strategy = "no",
|
| 240 |
optim="adamw_torch",
|
| 241 |
#load_best_model_at_end=False,
|
| 242 |
#load_best_model_at_end=True
|
| 243 |
#push_to_hub=True,
|
| 244 |
)
|
| 245 |
|
| 246 |
+
|
| 247 |
+
|
| 248 |
#Trainer zusammenstellen
|
| 249 |
print ("################################")
|
| 250 |
print ("trainer")
|
|
|
|
| 254 |
args=training_args,
|
| 255 |
train_dataset=lm_datasets["train"],
|
| 256 |
eval_dataset=lm_datasets["test"],
|
| 257 |
+
data_collator=data_collator,
|
| 258 |
#tokenizer=tokenizer,
|
| 259 |
compute_metrics=compute_metrics,
|
| 260 |
)
|
|
|
|
| 337 |
trainer.evaluate(eval_dataset=lm_datasets["test"])
|
| 338 |
print("Done Eval")
|
| 339 |
|
| 340 |
+
print('################ Test Trained Model ###################')
|
| 341 |
+
#predictions = trainer.predict(lm_datasets["test"])
|
| 342 |
+
#preds = np.argmax(predictions.predictions, axis=-1)
|
| 343 |
+
|
| 344 |
+
|
| 345 |
+
|
| 346 |
###################################################
|
| 347 |
#Save to a place -????? Where????
|
| 348 |
#print("Save to ???")
|
|
|
|
| 353 |
#####################################
|
| 354 |
#Push to Hub
|
| 355 |
print ("################################")
|
| 356 |
+
print("###################push to hub###################")
|
| 357 |
print("push to hub - Model")
|
| 358 |
login(token=os.environ["HF_WRITE_TOKEN"])
|
| 359 |
trainer.push_to_hub("alexkueck/li-tis-tuned-2")
|