File size: 9,386 Bytes
2568013 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
from math import isqrt
from typing import Literal
import torch
from diff_gaussian_rasterization import (
GaussianRasterizationSettings,
GaussianRasterizer,
)
from einops import einsum, rearrange, repeat
from jaxtyping import Float, Bool
from torch import Tensor
from ...geometry.projection import get_fov, homogenize_points
def get_projection_matrix(
near: Float[Tensor, " batch"],
far: Float[Tensor, " batch"],
fov_x: Float[Tensor, " batch"],
fov_y: Float[Tensor, " batch"],
) -> Float[Tensor, "batch 4 4"]:
"""Maps points in the viewing frustum to (-1, 1) on the X/Y axes and (0, 1) on the Z
axis. Differs from the OpenGL version in that Z doesn't have range (-1, 1) after
transformation and that Z is flipped.
"""
tan_fov_x = (0.5 * fov_x).tan()
tan_fov_y = (0.5 * fov_y).tan()
top = tan_fov_y * near
bottom = -top
right = tan_fov_x * near
left = -right
(b,) = near.shape
result = torch.zeros((b, 4, 4), dtype=torch.float32, device=near.device)
result[:, 0, 0] = 2 * near / (right - left)
result[:, 1, 1] = 2 * near / (top - bottom)
result[:, 0, 2] = (right + left) / (right - left)
result[:, 1, 2] = (top + bottom) / (top - bottom)
result[:, 3, 2] = 1
result[:, 2, 2] = far / (far - near)
result[:, 2, 3] = -(far * near) / (far - near)
return result
def render_cuda(
extrinsics: Float[Tensor, "batch 4 4"],
intrinsics: Float[Tensor, "batch 3 3"],
near: Float[Tensor, " batch"],
far: Float[Tensor, " batch"],
image_shape: tuple[int, int],
background_color: Float[Tensor, "batch 3"],
gaussian_means: Float[Tensor, "batch gaussian 3"],
gaussian_covariances: Float[Tensor, "batch gaussian 3 3"],
gaussian_sh_coefficients: Float[Tensor, "batch gaussian 3 d_sh"],
gaussian_opacities: Float[Tensor, "batch gaussian"],
scale_invariant: bool = True,
use_sh: bool = True,
cam_rot_delta: Float[Tensor, "batch 3"] | None = None,
cam_trans_delta: Float[Tensor, "batch 3"] | None = None,
voxel_masks: Bool[Tensor, "batch gaussian"] | None = None,
) -> tuple[Float[Tensor, "batch 3 height width"], Float[Tensor, "batch height width"]]:
assert use_sh or gaussian_sh_coefficients.shape[-1] == 1
# Make sure everything is in a range where numerical issues don't appear.
if scale_invariant:
scale = 1 / near
extrinsics = extrinsics.clone()
extrinsics[..., :3, 3] = extrinsics[..., :3, 3] * scale[:, None]
gaussian_covariances = gaussian_covariances * (scale[:, None, None, None] ** 2)
gaussian_means = gaussian_means * scale[:, None, None]
near = near * scale
far = far * scale
_, _, _, n = gaussian_sh_coefficients.shape
degree = isqrt(n) - 1
shs = rearrange(gaussian_sh_coefficients, "b g xyz n -> b g n xyz").contiguous()
b, _, _ = extrinsics.shape
h, w = image_shape
fov_x, fov_y = get_fov(intrinsics).unbind(dim=-1)
tan_fov_x = (0.5 * fov_x).tan()
tan_fov_y = (0.5 * fov_y).tan()
projection_matrix = get_projection_matrix(near, far, fov_x, fov_y)
projection_matrix = rearrange(projection_matrix, "b i j -> b j i")
view_matrix = rearrange(extrinsics.inverse(), "b i j -> b j i")
full_projection = view_matrix @ projection_matrix
all_images = []
all_radii = []
all_depths = []
for i in range(b):
# Set up a tensor for the gradients of the screen-space means.
mean_gradients = torch.zeros_like(gaussian_means[i], requires_grad=True)
try:
mean_gradients.retain_grad()
except Exception:
pass
settings = GaussianRasterizationSettings(
image_height=h,
image_width=w,
tanfovx=tan_fov_x[i].item(),
tanfovy=tan_fov_y[i].item(),
bg=background_color[i],
scale_modifier=1.0,
viewmatrix=view_matrix[i],
projmatrix=full_projection[i],
projmatrix_raw=projection_matrix[i],
sh_degree=degree,
campos=extrinsics[i, :3, 3],
prefiltered=False, # This matches the original usage.
debug=False,
)
rasterizer = GaussianRasterizer(settings)
row, col = torch.triu_indices(3, 3)
if voxel_masks is not None:
voxel_mask = voxel_masks[i]
image, radii, depth, opacity, n_touched = rasterizer(
means3D=gaussian_means[i][voxel_mask],
means2D=mean_gradients[voxel_mask],
shs=shs[i][voxel_mask] if use_sh else None,
colors_precomp=None if use_sh else shs[i, :, 0, :][voxel_mask],
opacities=gaussian_opacities[i][voxel_mask, ..., None],
cov3D_precomp=gaussian_covariances[i, :, row, col][voxel_mask],
theta=cam_rot_delta[i] if cam_rot_delta is not None else None,
rho=cam_trans_delta[i] if cam_trans_delta is not None else None,
)
else:
image, radii, depth, opacity, n_touched = rasterizer(
means3D=gaussian_means[i],
means2D=mean_gradients,
shs=shs[i] if use_sh else None,
colors_precomp=None if use_sh else shs[i, :, 0, :],
opacities=gaussian_opacities[i, ..., None],
cov3D_precomp=gaussian_covariances[i, :, row, col],
theta=cam_rot_delta[i] if cam_rot_delta is not None else None,
rho=cam_trans_delta[i] if cam_trans_delta is not None else None,
)
all_images.append(image)
all_radii.append(radii)
all_depths.append(depth.squeeze(0))
return torch.stack(all_images), torch.stack(all_depths)
def render_cuda_orthographic(
extrinsics: Float[Tensor, "batch 4 4"],
width: Float[Tensor, " batch"],
height: Float[Tensor, " batch"],
near: Float[Tensor, " batch"],
far: Float[Tensor, " batch"],
image_shape: tuple[int, int],
background_color: Float[Tensor, "batch 3"],
gaussian_means: Float[Tensor, "batch gaussian 3"],
gaussian_covariances: Float[Tensor, "batch gaussian 3 3"],
gaussian_sh_coefficients: Float[Tensor, "batch gaussian 3 d_sh"],
gaussian_opacities: Float[Tensor, "batch gaussian"],
fov_degrees: float = 0.1,
use_sh: bool = True,
dump: dict | None = None,
) -> Float[Tensor, "batch 3 height width"]:
b, _, _ = extrinsics.shape
h, w = image_shape
assert use_sh or gaussian_sh_coefficients.shape[-1] == 1
_, _, _, n = gaussian_sh_coefficients.shape
degree = isqrt(n) - 1
shs = rearrange(gaussian_sh_coefficients, "b g xyz n -> b g n xyz").contiguous()
# Create fake "orthographic" projection by moving the camera back and picking a
# small field of view.
fov_x = torch.tensor(fov_degrees, device=extrinsics.device).deg2rad()
tan_fov_x = (0.5 * fov_x).tan()
distance_to_near = (0.5 * width) / tan_fov_x
tan_fov_y = 0.5 * height / distance_to_near
fov_y = (2 * tan_fov_y).atan()
near = near + distance_to_near
far = far + distance_to_near
move_back = torch.eye(4, dtype=torch.float32, device=extrinsics.device)
move_back[2, 3] = -distance_to_near
extrinsics = extrinsics @ move_back
# Escape hatch for visualization/figures.
if dump is not None:
dump["extrinsics"] = extrinsics
dump["fov_x"] = fov_x
dump["fov_y"] = fov_y
dump["near"] = near
dump["far"] = far
projection_matrix = get_projection_matrix(
near, far, repeat(fov_x, "-> b", b=b), fov_y
)
projection_matrix = rearrange(projection_matrix, "b i j -> b j i")
view_matrix = rearrange(extrinsics.inverse(), "b i j -> b j i")
full_projection = view_matrix @ projection_matrix
all_images = []
all_radii = []
for i in range(b):
# Set up a tensor for the gradients of the screen-space means.
mean_gradients = torch.zeros_like(gaussian_means[i], requires_grad=True)
try:
mean_gradients.retain_grad()
except Exception:
pass
settings = GaussianRasterizationSettings(
image_height=h,
image_width=w,
tanfovx=tan_fov_x,
tanfovy=tan_fov_y,
bg=background_color[i],
scale_modifier=1.0,
viewmatrix=view_matrix[i],
projmatrix=full_projection[i],
projmatrix_raw=projection_matrix[i],
sh_degree=degree,
campos=extrinsics[i, :3, 3],
prefiltered=False, # This matches the original usage.
debug=False,
)
rasterizer = GaussianRasterizer(settings)
row, col = torch.triu_indices(3, 3)
image, radii, depth, opacity, n_touched = rasterizer(
means3D=gaussian_means[i],
means2D=mean_gradients,
shs=shs[i] if use_sh else None,
colors_precomp=None if use_sh else shs[i, :, 0, :],
opacities=gaussian_opacities[i, ..., None],
cov3D_precomp=gaussian_covariances[i, :, row, col],
)
all_images.append(image)
all_radii.append(radii)
return torch.stack(all_images)
DepthRenderingMode = Literal["depth", "disparity", "relative_disparity", "log"]
|