File size: 9,614 Bytes
2568013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import torch
from einops import einsum, rearrange, reduce
from jaxtyping import Float
from scipy.spatial.transform import Rotation as R
from torch import Tensor


def interpolate_intrinsics(
    initial: Float[Tensor, "*#batch 3 3"],
    final: Float[Tensor, "*#batch 3 3"],
    t: Float[Tensor, " time_step"],
) -> Float[Tensor, "*batch time_step 3 3"]:
    initial = rearrange(initial, "... i j -> ... () i j")
    final = rearrange(final, "... i j -> ... () i j")
    t = rearrange(t, "t -> t () ()")
    return initial + (final - initial) * t


def intersect_rays(
    a_origins: Float[Tensor, "*#batch dim"],
    a_directions: Float[Tensor, "*#batch dim"],
    b_origins: Float[Tensor, "*#batch dim"],
    b_directions: Float[Tensor, "*#batch dim"],
) -> Float[Tensor, "*batch dim"]:
    """Compute the least-squares intersection of rays. Uses the math from here:
    https://math.stackexchange.com/a/1762491/286022
    """

    # Broadcast and stack the tensors.
    a_origins, a_directions, b_origins, b_directions = torch.broadcast_tensors(
        a_origins, a_directions, b_origins, b_directions
    )
    origins = torch.stack((a_origins, b_origins), dim=-2)
    directions = torch.stack((a_directions, b_directions), dim=-2)

    # Compute n_i * n_i^T - eye(3) from the equation.
    n = einsum(directions, directions, "... n i, ... n j -> ... n i j")
    n = n - torch.eye(3, dtype=origins.dtype, device=origins.device)

    # Compute the left-hand side of the equation.
    lhs = reduce(n, "... n i j -> ... i j", "sum")

    # Compute the right-hand side of the equation.
    rhs = einsum(n, origins, "... n i j, ... n j -> ... n i")
    rhs = reduce(rhs, "... n i -> ... i", "sum")

    # Left-matrix-multiply both sides by the inverse of lhs to find p.
    return torch.linalg.lstsq(lhs, rhs).solution


def normalize(a: Float[Tensor, "*#batch dim"]) -> Float[Tensor, "*#batch dim"]:
    return a / a.norm(dim=-1, keepdim=True)


def generate_coordinate_frame(
    y: Float[Tensor, "*#batch 3"],
    z: Float[Tensor, "*#batch 3"],
) -> Float[Tensor, "*batch 3 3"]:
    """Generate a coordinate frame given perpendicular, unit-length Y and Z vectors."""
    y, z = torch.broadcast_tensors(y, z)
    return torch.stack([y.cross(z), y, z], dim=-1)


def generate_rotation_coordinate_frame(
    a: Float[Tensor, "*#batch 3"],
    b: Float[Tensor, "*#batch 3"],
    eps: float = 1e-4,
) -> Float[Tensor, "*batch 3 3"]:
    """Generate a coordinate frame where the Y direction is normal to the plane defined
    by unit vectors a and b. The other axes are arbitrary."""
    device = a.device

    # Replace every entry in b that's parallel to the corresponding entry in a with an
    # arbitrary vector.
    b = b.detach().clone()
    parallel = (einsum(a, b, "... i, ... i -> ...").abs() - 1).abs() < eps
    b[parallel] = torch.tensor([0, 0, 1], dtype=b.dtype, device=device)
    parallel = (einsum(a, b, "... i, ... i -> ...").abs() - 1).abs() < eps
    b[parallel] = torch.tensor([0, 1, 0], dtype=b.dtype, device=device)

    # Generate the coordinate frame. The initial cross product defines the plane.
    return generate_coordinate_frame(normalize(a.cross(b)), a)


def matrix_to_euler(
    rotations: Float[Tensor, "*batch 3 3"],
    pattern: str,
) -> Float[Tensor, "*batch 3"]:
    *batch, _, _ = rotations.shape
    rotations = rotations.reshape(-1, 3, 3)
    angles_np = R.from_matrix(rotations.detach().cpu().numpy()).as_euler(pattern)
    rotations = torch.tensor(angles_np, dtype=rotations.dtype, device=rotations.device)
    return rotations.reshape(*batch, 3)


def euler_to_matrix(
    rotations: Float[Tensor, "*batch 3"],
    pattern: str,
) -> Float[Tensor, "*batch 3 3"]:
    *batch, _ = rotations.shape
    rotations = rotations.reshape(-1, 3)
    matrix_np = R.from_euler(pattern, rotations.detach().cpu().numpy()).as_matrix()
    rotations = torch.tensor(matrix_np, dtype=rotations.dtype, device=rotations.device)
    return rotations.reshape(*batch, 3, 3)


def extrinsics_to_pivot_parameters(
    extrinsics: Float[Tensor, "*#batch 4 4"],
    pivot_coordinate_frame: Float[Tensor, "*#batch 3 3"],
    pivot_point: Float[Tensor, "*#batch 3"],
) -> Float[Tensor, "*batch 5"]:
    """Convert the extrinsics to a representation with 5 degrees of freedom:
    1. Distance from pivot point in the "X" (look cross pivot axis) direction.
    2. Distance from pivot point in the "Y" (pivot axis) direction.
    3. Distance from pivot point in the Z (look) direction
    4. Angle in plane
    5. Twist (rotation not in plane)
    """

    # The pivot coordinate frame's Z axis is normal to the plane.
    pivot_axis = pivot_coordinate_frame[..., :, 1]

    # Compute the translation elements of the pivot parametrization.
    translation_frame = generate_coordinate_frame(pivot_axis, extrinsics[..., :3, 2])
    origin = extrinsics[..., :3, 3]
    delta = pivot_point - origin
    translation = einsum(translation_frame, delta, "... i j, ... i -> ... j")

    # Add the rotation elements of the pivot parametrization.
    inverted = pivot_coordinate_frame.inverse() @ extrinsics[..., :3, :3]
    y, _, z = matrix_to_euler(inverted, "YXZ").unbind(dim=-1)

    return torch.cat([translation, y[..., None], z[..., None]], dim=-1)


def pivot_parameters_to_extrinsics(
    parameters: Float[Tensor, "*#batch 5"],
    pivot_coordinate_frame: Float[Tensor, "*#batch 3 3"],
    pivot_point: Float[Tensor, "*#batch 3"],
) -> Float[Tensor, "*batch 4 4"]:
    translation, y, z = parameters.split((3, 1, 1), dim=-1)

    euler = torch.cat((y, torch.zeros_like(y), z), dim=-1)
    rotation = pivot_coordinate_frame @ euler_to_matrix(euler, "YXZ")

    # The pivot coordinate frame's Z axis is normal to the plane.
    pivot_axis = pivot_coordinate_frame[..., :, 1]

    translation_frame = generate_coordinate_frame(pivot_axis, rotation[..., :3, 2])
    delta = einsum(translation_frame, translation, "... i j, ... j -> ... i")
    origin = pivot_point - delta

    *batch, _ = origin.shape
    extrinsics = torch.eye(4, dtype=parameters.dtype, device=parameters.device)
    extrinsics = extrinsics.broadcast_to((*batch, 4, 4)).clone()
    extrinsics[..., 3, 3] = 1
    extrinsics[..., :3, :3] = rotation
    extrinsics[..., :3, 3] = origin
    return extrinsics


def interpolate_circular(
    a: Float[Tensor, "*#batch"],
    b: Float[Tensor, "*#batch"],
    t: Float[Tensor, "*#batch"],
) -> Float[Tensor, " *batch"]:
    a, b, t = torch.broadcast_tensors(a, b, t)

    tau = 2 * torch.pi
    a = a % tau
    b = b % tau

    # Consider piecewise edge cases.
    d = (b - a).abs()
    a_left = a - tau
    d_left = (b - a_left).abs()
    a_right = a + tau
    d_right = (b - a_right).abs()
    use_d = (d < d_left) & (d < d_right)
    use_d_left = (d_left < d_right) & (~use_d)
    use_d_right = (~use_d) & (~use_d_left)

    result = a + (b - a) * t
    result[use_d_left] = (a_left + (b - a_left) * t)[use_d_left]
    result[use_d_right] = (a_right + (b - a_right) * t)[use_d_right]

    return result


def interpolate_pivot_parameters(
    initial: Float[Tensor, "*#batch 5"],
    final: Float[Tensor, "*#batch 5"],
    t: Float[Tensor, " time_step"],
) -> Float[Tensor, "*batch time_step 5"]:
    initial = rearrange(initial, "... d -> ... () d")
    final = rearrange(final, "... d -> ... () d")
    t = rearrange(t, "t -> t ()")
    ti, ri = initial.split((3, 2), dim=-1)
    tf, rf = final.split((3, 2), dim=-1)

    t_lerp = ti + (tf - ti) * t
    r_lerp = interpolate_circular(ri, rf, t)

    return torch.cat((t_lerp, r_lerp), dim=-1)


@torch.no_grad()
def interpolate_extrinsics(
    initial: Float[Tensor, "*#batch 4 4"],
    final: Float[Tensor, "*#batch 4 4"],
    t: Float[Tensor, " time_step"],
    eps: float = 1e-4,
) -> Float[Tensor, "*batch time_step 4 4"]:
    """Interpolate extrinsics by rotating around their "focus point," which is the
    least-squares intersection between the look vectors of the initial and final
    extrinsics.
    """

    initial = initial.type(torch.float64)
    final = final.type(torch.float64)
    t = t.type(torch.float64)

    # Based on the dot product between the look vectors, pick from one of two cases:
    # 1. Look vectors are parallel: interpolate about their origins' midpoint.
    # 3. Look vectors aren't parallel: interpolate about their focus point.
    initial_look = initial[..., :3, 2]
    final_look = final[..., :3, 2]
    dot_products = einsum(initial_look, final_look, "... i, ... i -> ...")
    parallel_mask = (dot_products.abs() - 1).abs() < eps

    # Pick focus points.
    initial_origin = initial[..., :3, 3]
    final_origin = final[..., :3, 3]
    pivot_point = 0.5 * (initial_origin + final_origin)
    pivot_point[~parallel_mask] = intersect_rays(
        initial_origin[~parallel_mask],
        initial_look[~parallel_mask],
        final_origin[~parallel_mask],
        final_look[~parallel_mask],
    )
    
    # Convert to pivot parameters.
    pivot_frame = generate_rotation_coordinate_frame(initial_look, final_look, eps=eps)
    initial_params = extrinsics_to_pivot_parameters(initial, pivot_frame, pivot_point)
    final_params = extrinsics_to_pivot_parameters(final, pivot_frame, pivot_point)

    # Interpolate the pivot parameters.
    interpolated_params = interpolate_pivot_parameters(initial_params, final_params, t)

    # Convert back.
    return pivot_parameters_to_extrinsics(
        interpolated_params.type(torch.float32),
        rearrange(pivot_frame, "... i j -> ... () i j").type(torch.float32),
        rearrange(pivot_point, "... xyz -> ... () xyz").type(torch.float32),
    )