File size: 17,340 Bytes
2568013 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 |
#!/usr/bin/env python3
import functools
import gc
import os
import shutil
import sys
import tempfile
import time
from datetime import datetime
from pathlib import Path
import cv2
import gradio as gr
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from src.misc.image_io import save_interpolated_video
from src.model.model.anysplat import AnySplat
from src.model.ply_export import export_ply
from src.utils.image import process_image
# 1) Core model inference
def get_reconstructed_scene(outdir, model, device):
# Load Images
image_files = sorted(
[
os.path.join(outdir, "images", f)
for f in os.listdir(os.path.join(outdir, "images"))
]
)
images = [process_image(img_path) for img_path in image_files]
images = torch.stack(images, dim=0).unsqueeze(0).to(device) # [1, K, 3, 448, 448]
b, v, c, h, w = images.shape
assert c == 3, "Images must have 3 channels"
# Run Inference
gaussians, pred_context_pose = model.inference((images + 1) * 0.5)
# Save the results
pred_all_extrinsic = pred_context_pose["extrinsic"]
pred_all_intrinsic = pred_context_pose["intrinsic"]
video, depth_colored = save_interpolated_video(
pred_all_extrinsic,
pred_all_intrinsic,
b,
h,
w,
gaussians,
outdir,
model.decoder,
)
plyfile = os.path.join(outdir, "gaussians.ply")
export_ply(
gaussians.means[0],
gaussians.scales[0],
gaussians.rotations[0],
gaussians.harmonics[0],
gaussians.opacities[0],
Path(plyfile),
save_sh_dc_only=True,
)
# Clean up
torch.cuda.empty_cache()
return plyfile, video, depth_colored
# 2) Handle uploaded video/images --> produce target_dir + images
def handle_uploads(input_video, input_images):
"""
Create a new 'target_dir' + 'images' subfolder, and place user-uploaded
images or extracted frames from video into it. Return (target_dir, image_paths).
"""
start_time = time.time()
gc.collect()
torch.cuda.empty_cache()
# Create a unique folder name
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
target_dir = f"input_images_{timestamp}"
target_dir_images = os.path.join(target_dir, "images")
# Clean up if somehow that folder already exists
if os.path.exists(target_dir):
shutil.rmtree(target_dir)
os.makedirs(target_dir)
os.makedirs(target_dir_images)
image_paths = []
# --- Handle images ---
if input_images is not None:
for file_data in input_images:
if isinstance(file_data, dict) and "name" in file_data:
file_path = file_data["name"]
else:
file_path = file_data
dst_path = os.path.join(target_dir_images, os.path.basename(file_path))
shutil.copy(file_path, dst_path)
image_paths.append(dst_path)
# --- Handle video ---
if input_video is not None:
if isinstance(input_video, dict) and "name" in input_video:
video_path = input_video["name"]
else:
video_path = input_video
vs = cv2.VideoCapture(video_path)
fps = vs.get(cv2.CAP_PROP_FPS)
frame_interval = int(fps * 1) # 1 frame/sec
count = 0
video_frame_num = 0
while True:
gotit, frame = vs.read()
if not gotit:
break
count += 1
if count % frame_interval == 0:
image_path = os.path.join(
target_dir_images, f"{video_frame_num:06}.png"
)
cv2.imwrite(image_path, frame)
image_paths.append(image_path)
video_frame_num += 1
# Sort final images for gallery
image_paths = sorted(image_paths)
end_time = time.time()
print(
f"Files copied to {target_dir_images}; took {end_time - start_time:.3f} seconds"
)
return target_dir, image_paths
# 3) Update gallery on upload
def update_gallery_on_upload(input_video, input_images):
"""
Whenever user uploads or changes files, immediately handle them
and show in the gallery. Return (target_dir, image_paths).
If nothing is uploaded, returns "None" and empty list.
"""
if not input_video and not input_images:
return None, None, None
target_dir, image_paths = handle_uploads(input_video, input_images)
return None, target_dir, image_paths
# 4) Reconstruction: uses the target_dir plus any viz parameters
def gradio_demo(
target_dir,
):
"""
Perform reconstruction using the already-created target_dir/images.
"""
if not os.path.isdir(target_dir) or target_dir == "None":
return None, None, None
start_time = time.time()
gc.collect()
torch.cuda.empty_cache()
# Prepare frame_filter dropdown
target_dir_images = os.path.join(target_dir, "images")
all_files = (
sorted(os.listdir(target_dir_images))
if os.path.isdir(target_dir_images)
else []
)
all_files = [f"{i}: {filename}" for i, filename in enumerate(all_files)]
print("Running run_model...")
with torch.no_grad():
plyfile, video, depth_colored = get_reconstructed_scene(
target_dir, model, device
)
end_time = time.time()
print(f"Total time: {end_time - start_time:.2f} seconds (including IO)")
return plyfile, video, depth_colored
def clear_fields():
"""
Clears the 3D viewer, the stored target_dir, and empties the gallery.
"""
return None, None, None
if __name__ == "__main__":
server_name = "127.0.0.1"
server_port = None
share = True
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load model
model = AnySplat.from_pretrained(
"lhjiang/anysplat"
)
model = model.to(device)
model.eval()
for param in model.parameters():
param.requires_grad = False
theme = gr.themes.Ocean()
theme.set(
checkbox_label_background_fill_selected="*button_primary_background_fill",
checkbox_label_text_color_selected="*button_primary_text_color",
)
css = """
.custom-log * {
font-style: italic;
font-size: 22px !important;
background-image: linear-gradient(120deg, #0ea5e9 0%, #6ee7b7 60%, #34d399 100%);
-webkit-background-clip: text;
background-clip: text;
font-weight: bold !important;
color: transparent !important;
text-align: center !important;
}
.example-log * {
font-style: italic;
font-size: 16px !important;
background-image: linear-gradient(120deg, #0ea5e9 0%, #6ee7b7 60%, #34d399 100%);
-webkit-background-clip: text;
background-clip: text;
color: transparent !important;
}
#my_radio .wrap {
display: flex;
flex-wrap: nowrap;
justify-content: center;
align-items: center;
}
#my_radio .wrap label {
display: flex;
width: 50%;
justify-content: center;
align-items: center;
margin: 0;
padding: 10px 0;
box-sizing: border-box;
}
"""
with gr.Blocks(css=css, title="AnySplat Demo", theme=theme) as demo:
gr.Markdown(
"""
<h1 style='text-align: center;'>AnySplat: Feed-forward 3D Gaussian Splatting from Unconstrained Views</h1>
"""
)
with gr.Row():
gr.Markdown(
"""
<p align="center">
<a title="Website" href="https://city-super.github.io/anysplat/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-website.svg">
</a>
<a title="arXiv" href="https://arxiv.org/pdf/2505.23716" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-pdf.svg">
</a>
<a title="Github" href="https://github.com/OpenRobotLab/AnySplat" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://img.shields.io/badge/Github-Page-black" alt="badge-github-stars">
</a>
</p>
"""
)
with gr.Row():
gr.Markdown(
"""
### Getting Started:
1. Upload Your Data: Use the "Upload Video" or "Upload Images" buttons on the left to provide your input. Videos will be automatically split into individual frames (one frame per second).
2. Preview: Your uploaded images will appear in the gallery on the left.
3. Reconstruct: Click the "Reconstruct" button to start the 3D reconstruction process.
4. Visualize: The reconstructed 3D Gaussian Splat will appear in the viewer on the right, along with the rendered RGB and depth videos. The trajectory of the rendered video is obtained by interpolating the estimated input image poses.
<strong style="color: #0ea5e9;">Please note:</strong> <span style="color: #0ea5e9; font-weight: bold;">The generated splats are large in size, so they may not load successfully in the Hugging Face demo. You can download the .ply file and render it using other viewers, such as [SuperSplat](https://playcanvas.com/supersplat/editor).</span>
"""
)
target_dir_output = gr.Textbox(label="Target Dir", visible=False, value="None")
is_example = gr.Textbox(label="is_example", visible=False, value="None")
num_images = gr.Textbox(label="num_images", visible=False, value="None")
dataset_name = gr.Textbox(label="dataset_name", visible=False, value="None")
scene_name = gr.Textbox(label="scene_name", visible=False, value="None")
image_type = gr.Textbox(label="image_type", visible=False, value="None")
with gr.Row():
with gr.Column(scale=2):
with gr.Tabs():
with gr.Tab("Input Data"):
input_video = gr.Video(label="Upload Video", interactive=True)
input_images = gr.File(
file_count="multiple",
label="Upload Images",
interactive=True,
)
image_gallery = gr.Gallery(
label="Preview",
columns=4,
height="300px",
show_download_button=True,
object_fit="contain",
preview=True,
)
with gr.Column(scale=4):
with gr.Tabs():
with gr.Tab("AnySplat Output"):
with gr.Column():
reconstruction_output = gr.Model3D(
label="3D Reconstructed Gaussian Splat",
height=540,
zoom_speed=0.5,
pan_speed=0.5,
camera_position=[20, 20, 20],
)
with gr.Row():
with gr.Row():
rgb_video = gr.Video(
label="RGB Video", interactive=False, autoplay=True
)
depth_video = gr.Video(
label="Depth Video",
interactive=False,
autoplay=True,
)
with gr.Row():
submit_btn = gr.Button(
"Reconstruct", scale=1, variant="primary"
)
clear_btn = gr.ClearButton(
[
input_video,
input_images,
reconstruction_output,
target_dir_output,
image_gallery,
rgb_video,
depth_video,
],
scale=1,
)
# ---------------------- Examples section ----------------------
examples = [
[None, "examples/video/re10k_1eca36ec55b88fe4.mp4", "re10k", "1eca36ec55b88fe4", "2", "Real", "True",],
[None, "examples/video/bungeenerf_colosseum.mp4", "bungeenerf", "colosseum", "8", "Synthetic", "True",],
[None, "examples/video/fox.mp4", "InstantNGP", "fox", "14", "Real", "True",],
[None, "examples/video/matrixcity_street.mp4", "matrixcity", "street", "32", "Synthetic", "True",],
[None, "examples/video/vrnerf_apartment.mp4", "vrnerf", "apartment", "32", "Real", "True",],
[None, "examples/video/vrnerf_kitchen.mp4", "vrnerf", "kitchen", "17", "Real", "True",],
[None, "examples/video/vrnerf_riverview.mp4", "vrnerf", "riverview", "12", "Real", "True",],
[None, "examples/video/vrnerf_workshop.mp4", "vrnerf", "workshop", "32", "Real", "True",],
[None, "examples/video/fillerbuster_ramen.mp4", "fillerbuster", "ramen", "32", "Real", "True",],
[None, "examples/video/meganerf_rubble.mp4", "meganerf", "rubble", "10", "Real", "True",],
[None, "examples/video/llff_horns.mp4", "llff", "horns", "12", "Real", "True",],
[None, "examples/video/llff_fortress.mp4", "llff", "fortress", "7", "Real", "True",],
[None, "examples/video/dtu_scan_106.mp4", "dtu", "scan_106", "20", "Real", "True",],
[None, "examples/video/horizongs_hillside_summer.mp4", "horizongs", "hillside_summer", "55", "Synthetic", "True",],
[None, "examples/video/kitti360.mp4", "kitti360", "kitti360", "64", "Real", "True",],
]
def example_pipeline(
input_images,
input_video,
dataset_name,
scene_name,
num_images_str,
image_type,
is_example,
):
"""
1) Copy example images to new target_dir
2) Reconstruct
3) Return model3D + logs + new_dir + updated dropdown + gallery
We do NOT return is_example. It's just an input.
"""
target_dir, image_paths = handle_uploads(input_video, input_images)
plyfile, video, depth_colored = gradio_demo(target_dir)
return plyfile, video, depth_colored, target_dir, image_paths
gr.Markdown("Click any row to load an example.", elem_classes=["example-log"])
gr.Examples(
examples=examples,
inputs=[
input_images,
input_video,
dataset_name,
scene_name,
num_images,
image_type,
is_example,
],
outputs=[
reconstruction_output,
rgb_video,
depth_video,
target_dir_output,
image_gallery,
],
fn=example_pipeline,
cache_examples=False,
examples_per_page=50,
)
gr.Markdown("<p style='text-align: center; font-style: italic; color: #666;'>We thank VGGT for their excellent gradio implementation!</p>")
submit_btn.click(
fn=clear_fields,
inputs=[],
outputs=[reconstruction_output, rgb_video, depth_video],
).then(
fn=gradio_demo,
inputs=[
target_dir_output,
],
outputs=[reconstruction_output, rgb_video, depth_video],
).then(
fn=lambda: "False", inputs=[], outputs=[is_example]
)
input_video.change(
fn=update_gallery_on_upload,
inputs=[input_video, input_images],
outputs=[reconstruction_output, target_dir_output, image_gallery],
)
input_images.change(
fn=update_gallery_on_upload,
inputs=[input_video, input_images],
outputs=[reconstruction_output, target_dir_output, image_gallery],
)
# demo.launch(share=share, server_name=server_name, server_port=server_port)
demo.queue(max_size=20).launch(show_error=True, share=True)
# We thank VGGT for their excellent gradio implementation
|