File size: 17,331 Bytes
f17f7b0
2568013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
import spaces
import functools
import gc
import os
import shutil
import sys
import tempfile
import time
from datetime import datetime
from pathlib import Path

import cv2
import gradio as gr
import torch
from huggingface_hub import hf_hub_download
from PIL import Image

sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))

from src.misc.image_io import save_interpolated_video
from src.model.model.anysplat import AnySplat
from src.model.ply_export import export_ply
from src.utils.image import process_image


# 1) Core model inference
def get_reconstructed_scene(outdir, model, device):
    # Load Images
    image_files = sorted(
        [
            os.path.join(outdir, "images", f)
            for f in os.listdir(os.path.join(outdir, "images"))
        ]
    )
    images = [process_image(img_path) for img_path in image_files]
    images = torch.stack(images, dim=0).unsqueeze(0).to(device)  # [1, K, 3, 448, 448]
    b, v, c, h, w = images.shape

    assert c == 3, "Images must have 3 channels"

    # Run Inference
    gaussians, pred_context_pose = model.inference((images + 1) * 0.5)

    # Save the results
    pred_all_extrinsic = pred_context_pose["extrinsic"]
    pred_all_intrinsic = pred_context_pose["intrinsic"]
    video, depth_colored = save_interpolated_video(
        pred_all_extrinsic,
        pred_all_intrinsic,
        b,
        h,
        w,
        gaussians,
        outdir,
        model.decoder,
    )

    plyfile = os.path.join(outdir, "gaussians.ply")
    export_ply(
        gaussians.means[0],
        gaussians.scales[0],
        gaussians.rotations[0],
        gaussians.harmonics[0],
        gaussians.opacities[0],
        Path(plyfile),
        save_sh_dc_only=True,
    )

    # Clean up
    torch.cuda.empty_cache()
    return plyfile, video, depth_colored


# 2) Handle uploaded video/images --> produce target_dir + images
def handle_uploads(input_video, input_images):
    """
    Create a new 'target_dir' + 'images' subfolder, and place user-uploaded
    images or extracted frames from video into it. Return (target_dir, image_paths).
    """
    start_time = time.time()
    gc.collect()
    torch.cuda.empty_cache()

    # Create a unique folder name
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
    target_dir = f"input_images_{timestamp}"
    target_dir_images = os.path.join(target_dir, "images")

    # Clean up if somehow that folder already exists
    if os.path.exists(target_dir):
        shutil.rmtree(target_dir)
    os.makedirs(target_dir)
    os.makedirs(target_dir_images)

    image_paths = []

    # --- Handle images ---
    if input_images is not None:
        for file_data in input_images:
            if isinstance(file_data, dict) and "name" in file_data:
                file_path = file_data["name"]
            else:
                file_path = file_data
            dst_path = os.path.join(target_dir_images, os.path.basename(file_path))
            shutil.copy(file_path, dst_path)
            image_paths.append(dst_path)

    # --- Handle video ---
    if input_video is not None:
        if isinstance(input_video, dict) and "name" in input_video:
            video_path = input_video["name"]
        else:
            video_path = input_video

        vs = cv2.VideoCapture(video_path)
        fps = vs.get(cv2.CAP_PROP_FPS)
        frame_interval = int(fps * 1)  # 1 frame/sec

        count = 0
        video_frame_num = 0
        while True:
            gotit, frame = vs.read()
            if not gotit:
                break
            count += 1
            if count % frame_interval == 0:
                image_path = os.path.join(
                    target_dir_images, f"{video_frame_num:06}.png"
                )
                cv2.imwrite(image_path, frame)
                image_paths.append(image_path)
                video_frame_num += 1

    # Sort final images for gallery
    image_paths = sorted(image_paths)

    end_time = time.time()
    print(
        f"Files copied to {target_dir_images}; took {end_time - start_time:.3f} seconds"
    )
    return target_dir, image_paths


# 3) Update gallery on upload
def update_gallery_on_upload(input_video, input_images):
    """
    Whenever user uploads or changes files, immediately handle them
    and show in the gallery. Return (target_dir, image_paths).
    If nothing is uploaded, returns "None" and empty list.
    """
    if not input_video and not input_images:
        return None, None, None
    target_dir, image_paths = handle_uploads(input_video, input_images)
    return None, target_dir, image_paths


# 4) Reconstruction: uses the target_dir plus any viz parameters
def gradio_demo(
    target_dir,
):
    """
    Perform reconstruction using the already-created target_dir/images.
    """
    if not os.path.isdir(target_dir) or target_dir == "None":
        return None, None, None

    start_time = time.time()
    gc.collect()
    torch.cuda.empty_cache()
    
    # Prepare frame_filter dropdown
    target_dir_images = os.path.join(target_dir, "images")
    all_files = (
        sorted(os.listdir(target_dir_images))
        if os.path.isdir(target_dir_images)
        else []
    )
    all_files = [f"{i}: {filename}" for i, filename in enumerate(all_files)]

    print("Running run_model...")
    with torch.no_grad():
        plyfile, video, depth_colored = get_reconstructed_scene(
            target_dir, model, device
        )

    end_time = time.time()
    print(f"Total time: {end_time - start_time:.2f} seconds (including IO)")

    return plyfile, video, depth_colored


def clear_fields():
    """
    Clears the 3D viewer, the stored target_dir, and empties the gallery.
    """
    return None, None, None


if __name__ == "__main__":
    server_name = "127.0.0.1"
    server_port = None
    share = True
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    
    # Load model
    model = AnySplat.from_pretrained(
        "lhjiang/anysplat"
    )
    model = model.to(device)
    model.eval()
    for param in model.parameters():
        param.requires_grad = False

    theme = gr.themes.Ocean()
    theme.set(
        checkbox_label_background_fill_selected="*button_primary_background_fill",
        checkbox_label_text_color_selected="*button_primary_text_color",
    )
    css = """
        .custom-log * {
            font-style: italic;
            font-size: 22px !important;
            background-image: linear-gradient(120deg, #0ea5e9 0%, #6ee7b7 60%, #34d399 100%);
            -webkit-background-clip: text;
            background-clip: text;
            font-weight: bold !important;
            color: transparent !important;
            text-align: center !important;
        }
        
        .example-log * {
            font-style: italic;
            font-size: 16px !important;
            background-image: linear-gradient(120deg, #0ea5e9 0%, #6ee7b7 60%, #34d399 100%);
            -webkit-background-clip: text;
            background-clip: text;
            color: transparent !important;
        }
        
        #my_radio .wrap {
            display: flex;
            flex-wrap: nowrap;
            justify-content: center;
            align-items: center;
        }

        #my_radio .wrap label {
            display: flex;
            width: 50%;
            justify-content: center;
            align-items: center;
            margin: 0;
            padding: 10px 0;
            box-sizing: border-box;
        }
        """
    with gr.Blocks(css=css, title="AnySplat Demo", theme=theme) as demo:
        gr.Markdown(
            """
            <h1 style='text-align: center;'>AnySplat: Feed-forward 3D Gaussian Splatting from Unconstrained Views</h1>
            """
        )

        with gr.Row():
            gr.Markdown(
                """
                        <p align="center">
                        <a title="Website" href="https://city-super.github.io/anysplat/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
                            <img src="https://www.obukhov.ai/img/badges/badge-website.svg">
                        </a>
                        <a title="arXiv" href="https://arxiv.org/pdf/2505.23716" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
                            <img src="https://www.obukhov.ai/img/badges/badge-pdf.svg">
                        </a>
                        <a title="Github" href="https://github.com/OpenRobotLab/AnySplat" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
                            <img src="https://img.shields.io/badge/Github-Page-black" alt="badge-github-stars">
                        </a>
                
                        </p>
                        """
            )
        with gr.Row():
            gr.Markdown(
                """
            ### Getting Started:

            1. Upload Your Data: Use the "Upload Video" or "Upload Images" buttons on the left to provide your input. Videos will be automatically split into individual frames (one frame per second).

            2. Preview: Your uploaded images will appear in the gallery on the left.

            3. Reconstruct: Click the "Reconstruct" button to start the 3D reconstruction process.

            4. Visualize: The reconstructed 3D Gaussian Splat will appear in the viewer on the right, along with the rendered RGB and depth videos. The trajectory of the rendered video is obtained by interpolating the estimated input image poses.
            
            <strong style="color: #0ea5e9;">Please note:</strong> <span style="color: #0ea5e9; font-weight: bold;">The generated splats are large in size, so they may not load successfully in the Hugging Face demo. You can download the .ply file and render it using other viewers, such as [SuperSplat](https://playcanvas.com/supersplat/editor).</span>
            """
            )

        target_dir_output = gr.Textbox(label="Target Dir", visible=False, value="None")
        is_example = gr.Textbox(label="is_example", visible=False, value="None")
        num_images = gr.Textbox(label="num_images", visible=False, value="None")
        dataset_name = gr.Textbox(label="dataset_name", visible=False, value="None")
        scene_name = gr.Textbox(label="scene_name", visible=False, value="None")
        image_type = gr.Textbox(label="image_type", visible=False, value="None")

        with gr.Row():
            with gr.Column(scale=2):
                with gr.Tabs():
                    with gr.Tab("Input Data"):
                        input_video = gr.Video(label="Upload Video", interactive=True)
                        input_images = gr.File(
                            file_count="multiple",
                            label="Upload Images",
                            interactive=True,
                        )

                        image_gallery = gr.Gallery(
                            label="Preview",
                            columns=4,
                            height="300px",
                            show_download_button=True,
                            object_fit="contain",
                            preview=True,
                        )

            with gr.Column(scale=4):
                with gr.Tabs():
                    with gr.Tab("AnySplat Output"):
                        with gr.Column():
                            reconstruction_output = gr.Model3D(
                                label="3D Reconstructed Gaussian Splat",
                                height=540,
                                zoom_speed=0.5,
                                pan_speed=0.5,
                                camera_position=[20, 20, 20],
                            )

                        with gr.Row():
                            with gr.Row():
                                rgb_video = gr.Video(
                                    label="RGB Video", interactive=False, autoplay=True
                                )
                                depth_video = gr.Video(
                                    label="Depth Video",
                                    interactive=False,
                                    autoplay=True,
                                )

                        with gr.Row():
                            submit_btn = gr.Button(
                                "Reconstruct", scale=1, variant="primary"
                            )
                            clear_btn = gr.ClearButton(
                                [
                                    input_video,
                                    input_images,
                                    reconstruction_output,
                                    target_dir_output,
                                    image_gallery,
                                    rgb_video,
                                    depth_video,
                                ],
                                scale=1,
                            )

        # ---------------------- Examples section ----------------------

        examples = [
            [None, "examples/video/re10k_1eca36ec55b88fe4.mp4", "re10k", "1eca36ec55b88fe4", "2", "Real", "True",],
            [None, "examples/video/bungeenerf_colosseum.mp4", "bungeenerf", "colosseum", "8", "Synthetic", "True",],
            [None, "examples/video/fox.mp4", "InstantNGP", "fox", "14", "Real", "True",],
            [None, "examples/video/matrixcity_street.mp4", "matrixcity", "street", "32", "Synthetic", "True",],
            [None, "examples/video/vrnerf_apartment.mp4", "vrnerf", "apartment", "32", "Real", "True",],
            [None, "examples/video/vrnerf_kitchen.mp4", "vrnerf", "kitchen", "17", "Real", "True",],
            [None, "examples/video/vrnerf_riverview.mp4", "vrnerf", "riverview", "12", "Real", "True",],
            [None, "examples/video/vrnerf_workshop.mp4", "vrnerf", "workshop", "32", "Real", "True",],
            [None, "examples/video/fillerbuster_ramen.mp4", "fillerbuster", "ramen", "32", "Real", "True",],
            [None, "examples/video/meganerf_rubble.mp4", "meganerf", "rubble", "10", "Real", "True",],
            [None, "examples/video/llff_horns.mp4", "llff", "horns", "12", "Real", "True",],
            [None, "examples/video/llff_fortress.mp4", "llff", "fortress", "7", "Real", "True",],
            [None, "examples/video/dtu_scan_106.mp4", "dtu", "scan_106", "20", "Real", "True",],
            [None, "examples/video/horizongs_hillside_summer.mp4", "horizongs", "hillside_summer", "55", "Synthetic", "True",],
            [None, "examples/video/kitti360.mp4", "kitti360", "kitti360", "64", "Real", "True",],
        ]

        def example_pipeline(
            input_images,
            input_video,
            dataset_name,
            scene_name,
            num_images_str,
            image_type,
            is_example,
        ):
            """
            1) Copy example images to new target_dir
            2) Reconstruct
            3) Return model3D + logs + new_dir + updated dropdown + gallery
            We do NOT return is_example. It's just an input.
            """
            target_dir, image_paths = handle_uploads(input_video, input_images)
            plyfile, video, depth_colored = gradio_demo(target_dir)
            return plyfile, video, depth_colored, target_dir, image_paths

        gr.Markdown("Click any row to load an example.", elem_classes=["example-log"])

        gr.Examples(
            examples=examples,
            inputs=[
                input_images,
                input_video,
                dataset_name,
                scene_name,
                num_images,
                image_type,
                is_example,
            ],
            outputs=[
                reconstruction_output,
                rgb_video,
                depth_video,
                target_dir_output,
                image_gallery,
            ],
            fn=example_pipeline,
            cache_examples=False,
            examples_per_page=50,
        )

        gr.Markdown("<p style='text-align: center; font-style: italic; color: #666;'>We thank VGGT for their excellent gradio implementation!</p>")

        submit_btn.click(
            fn=clear_fields,
            inputs=[],
            outputs=[reconstruction_output, rgb_video, depth_video],
        ).then(
            fn=gradio_demo,
            inputs=[
                target_dir_output,
            ],
            outputs=[reconstruction_output, rgb_video, depth_video],
        ).then(
            fn=lambda: "False", inputs=[], outputs=[is_example]
        )

        input_video.change(
            fn=update_gallery_on_upload,
            inputs=[input_video, input_images],
            outputs=[reconstruction_output, target_dir_output, image_gallery],
        )
        input_images.change(
            fn=update_gallery_on_upload,
            inputs=[input_video, input_images],
            outputs=[reconstruction_output, target_dir_output, image_gallery],
        )

        # demo.launch(share=share, server_name=server_name, server_port=server_port)
        demo.queue(max_size=20).launch(show_error=True, share=True)

        # We thank VGGT for their excellent gradio implementation