File size: 14,103 Bytes
2568013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# Random sampling under a constraint
# --------------------------------------------------------
import numpy as np
import torch
from typing import Callable, Iterable, Optional
from torch.utils.data import DataLoader, Dataset, DistributedSampler, IterableDataset, Sampler, BatchSampler
import random

def custom_collate_fn(batch):
    """
    Custom collate function to handle variable batch sizes
    
    Args:
        batch: A list where each element could be either:
            - A single tuple (idx, num_images, ...)
            - A list of tuples [(idx1, num_images1, ...), (idx2, num_images2, ...)]
    """
    # If batch contains lists (variable batch size case)
    breakpoint()
    if isinstance(batch[0], list):
        # Flatten the batch
        flattened = []
        for item in batch:
            flattened.extend(item)
        batch = flattened
    
    # Now batch is a list of tuples, process normally
    return torch.utils.data.default_collate(batch)

class BatchedRandomSampler:
    """Random sampling under a constraint: each sample in the batch has the same feature,
    which is chosen randomly from a known pool of 'features' for each batch.

    For instance, the 'feature' could be the image aspect-ratio.

    The index returned is a tuple (sample_idx, feat_idx).
    This sampler ensures that each series of `batch_size` indices has the same `feat_idx`.
    """

    def __init__(
        self, dataset, batch_size, num_context_views, min_patch_num=20, max_patch_num=32, world_size=1, rank=0, drop_last=True
    ):
        self.batch_size = batch_size
        self.num_context_views = num_context_views

        self.len_dataset = N = len(dataset)
        self.total_size = round_by(N, batch_size * world_size) if drop_last else N
        self.min_patch_num = min_patch_num
        self.max_patch_num = max_patch_num
        assert (
            world_size == 1 or drop_last
        ), "must drop the last batch in distributed mode"

        # distributed sampler
        self.world_size = world_size
        self.rank = rank
        self.epoch = None

    def __len__(self):


        return self.total_size // self.world_size

    def set_epoch(self, epoch):
        self.epoch = epoch

    def __iter__(self):
        # prepare RNG
        if self.epoch is None:
            assert (
                self.world_size == 1 and self.rank == 0
            ), "use set_epoch() if distributed mode is used"
            seed = int(torch.empty((), dtype=torch.int64).random_().item())
        else:
            seed = self.epoch + 777
        rng = np.random.default_rng(seed=seed)
        
        # random indices (will restart from 0 if not drop_last)
        sample_idxs = np.arange(self.total_size)
        rng.shuffle(sample_idxs)
        
        # random feat_idxs (same across each batch)
        n_batches = (self.total_size + self.batch_size - 1) // self.batch_size
        num_imgs = rng.integers(low=2, high=self.num_context_views, size=n_batches)
        # num_imgs = (np.ones(n_batches) * self.num_context_views).astype(np.int64) # same number of context views for each batch
        num_imgs = np.broadcast_to(num_imgs[:, None], (n_batches, self.batch_size))
        num_imgs = num_imgs.ravel()[: self.total_size]

        # put them together
        idxs = np.c_[sample_idxs, num_imgs]  # shape = (total_size, 2)

        # Distributed sampler: we select a subset of batches
        # make sure the slice for each node is aligned with batch_size
        size_per_proc = self.batch_size * (
            (self.total_size + self.world_size * self.batch_size - 1)
            // (self.world_size * self.batch_size)
        )
        idxs = idxs[self.rank * size_per_proc : (self.rank + 1) * size_per_proc]

        yield from (tuple(idx) for idx in idxs)

class DynamicBatchSampler(Sampler):
    """
    A custom batch sampler that dynamically adjusts batch size, aspect ratio, and image number
    for each sample. Batches within a sample share the same aspect ratio and image number.
    """
    def __init__(self,
                 sampler,
                 image_num_range,
                 h_range,
                 epoch=0,
                 seed=42,
                 max_img_per_gpu=48):
        """
        Initializes the dynamic batch sampler.

        Args:
            sampler: Instance of DynamicDistributedSampler.
            aspect_ratio_range: List containing [min_aspect_ratio, max_aspect_ratio].
            image_num_range: List containing [min_images, max_images] per sample.
            epoch: Current epoch number.
            seed: Random seed for reproducibility.
            max_img_per_gpu: Maximum number of images to fit in GPU memory.
        """
        self.sampler = sampler
        self.image_num_range = image_num_range
        self.h_range = h_range
        self.rng = random.Random()
        
        # Uniformly sample from the range of possible image numbers
        # For any image number, the weight is 1.0 (uniform sampling). You can set any different weights here.
        self.image_num_weights = {num_images: float(num_images**2) for num_images in range(image_num_range[0], image_num_range[1]+1)}

        # Possible image numbers, e.g., [2, 3, 4, ..., 24]
        self.possible_nums = np.array([n for n in self.image_num_weights.keys()
                                       if self.image_num_range[0] <= n <= self.image_num_range[1]])
        
        # Normalize weights for sampling
        weights = [self.image_num_weights[n] for n in self.possible_nums]
        self.normalized_weights = np.array(weights) / sum(weights)

        # Maximum image number per GPU
        self.max_img_per_gpu = max_img_per_gpu

        # Set the epoch for the sampler
        self.set_epoch(epoch + seed)

    def set_epoch(self, epoch):
        """
        Sets the epoch for this sampler, affecting the random sequence.

        Args:
            epoch: The epoch number.
        """
        self.sampler.set_epoch(epoch)
        self.epoch = epoch
        self.rng.seed(epoch * 100)

    def __iter__(self):
        """
        Yields batches of samples with synchronized dynamic parameters.

        Returns:
            Iterator yielding batches of indices with associated parameters.
        """
        sampler_iterator = iter(self.sampler)

        while True:
            try:
                # Sample random image number and aspect ratio
                random_image_num = int(np.random.choice(self.possible_nums, p=self.normalized_weights))
                random_ps_h = np.random.randint(low=(self.h_range[0] // 14), high=(self.h_range[1] // 14)+1)

                # Update sampler parameters
                self.sampler.update_parameters(
                    image_num=random_image_num,
                    ps_h=random_ps_h
                )
                
                # Calculate batch size based on max images per GPU and current image number
                batch_size = self.max_img_per_gpu / random_image_num
                batch_size = np.floor(batch_size).astype(int)
                batch_size = max(1, batch_size)  # Ensure batch size is at least 1

                # Collect samples for the current batch
                current_batch = []
                for _ in range(batch_size):
                    try:
                        item = next(sampler_iterator)  # item is (idx, aspect_ratio, image_num)
                        current_batch.append(item)
                    except StopIteration:
                        break  # No more samples

                if not current_batch:
                    break  # No more data to yield

                yield current_batch

            except StopIteration:
                break  # End of sampler's iterator

    def __len__(self):
        # Return a large dummy length
        return 1000000


class DynamicDistributedSampler(DistributedSampler):
    """
    Extends PyTorch's DistributedSampler to include dynamic aspect_ratio and image_num
    parameters, which can be passed into the dataset's __getitem__ method.
    """
    def __init__(
        self,
        dataset,
        num_replicas: Optional[int] = None,
        rank: Optional[int] = None,
        shuffle: bool = False,
        seed: int = 0,
        drop_last: bool = False,
    ):
        super().__init__(
            dataset,
            num_replicas=num_replicas,
            rank=rank,
            shuffle=shuffle,
            seed=seed,
            drop_last=drop_last
        )
        self.image_num = None
        self.ps_h = None

    def __iter__(self):
        """
        Yields a sequence of (index, image_num, aspect_ratio).
        Relies on the parent class's logic for shuffling/distributing
        the indices across replicas, then attaches extra parameters.
        """
        indices_iter = super().__iter__()

        for idx in indices_iter:
            yield (idx, self.image_num, self.ps_h, )

    def update_parameters(self, image_num, ps_h):
        """
        Updates dynamic parameters for each new epoch or iteration.

        Args:
            aspect_ratio: The aspect ratio to set.
            image_num: The number of images to set.
        """
        self.image_num = image_num
        self.ps_h = ps_h

class MixedBatchSampler(BatchSampler):
    """Sample one batch from a selected dataset with given probability.
    Compatible with datasets at different resolution
    """

    def __init__(
        self, src_dataset_ls, batch_size, num_context_views, world_size=1, rank=0, prob=None, sampler=None, generator=None
    ):
        self.base_sampler = None
        self.batch_size = batch_size
        self.num_context_views = num_context_views
        self.world_size = world_size
        self.rank = rank
        self.drop_last = True
        self.generator = generator

        self.src_dataset_ls = src_dataset_ls
        self.n_dataset = len(self.src_dataset_ls)
        
        # Dataset length
        self.dataset_length = [len(ds) for ds in self.src_dataset_ls]
        self.cum_dataset_length = [
            sum(self.dataset_length[:i]) for i in range(self.n_dataset)
        ]  # cumulative dataset length
        
        # BatchSamplers for each source dataset
        self.src_batch_samplers = []
        for ds in self.src_dataset_ls:
            sampler = DynamicDistributedSampler(ds, num_replicas=self.world_size, rank=self.rank, seed=42, shuffle=True)
            sampler.set_epoch(0)

            if hasattr(ds, "epoch"):
                ds.epoch = 0
            if hasattr(ds, "set_epoch"):
                ds.set_epoch(0)
            batch_sampler = DynamicBatchSampler(
                sampler, 
                [2, ds.cfg.view_sampler.num_context_views], 
                ds.cfg.input_image_shape,
                seed=42,
                max_img_per_gpu=ds.cfg.view_sampler.max_img_per_gpu
            )
            self.src_batch_samplers.append(batch_sampler)
        
        # self.src_batch_samplers = [
        #     BatchedRandomSampler(
        #         ds,
        #         num_context_views=ds.cfg.view_sampler.num_context_views,
        #         world_size=self.world_size,
        #         rank=self.rank,
        #         batch_size=self.batch_size,
        #         drop_last=self.drop_last,
        #     )
        #     for ds in self.src_dataset_ls
        # ]
        # set epoch here
        print("Setting epoch for all underlying BatchedRandomSamplers")
        # for sampler in self.src_batch_samplers:
        #     sampler.set_epoch(0)
        self.raw_batches = [
            list(bs) for bs in self.src_batch_samplers
        ]  # index in original dataset
        self.n_batches = [len(b) for b in self.raw_batches]
        self.n_total_batch = sum(self.n_batches)
        # print("Total batch num is ", self.n_total_batch)
        # sampling probability
        if prob is None:
            # if not given, decide by dataset length
            self.prob = torch.tensor(self.n_batches) / self.n_total_batch
        else:
            self.prob = torch.as_tensor(prob)
    
    def __iter__(self):
        """Yields batches of indices in the format of (sample_idx, feat_idx) tuples,
        where indices correspond to ConcatDataset of src_dataset_ls
        """
        for _ in range(self.n_total_batch):
            idx_ds = torch.multinomial(
                self.prob, 1, replacement=True, generator=self.generator
            ).item()
            
            if 0 == len(self.raw_batches[idx_ds]):
                self.raw_batches[idx_ds] = list(self.src_batch_samplers[idx_ds])
            
            # get a batch from list - this is already in (sample_idx, feat_idx) format
            batch_raw = self.raw_batches[idx_ds].pop()

            # shift only the sample_idx by cumulative dataset length, keep feat_idx unchanged
            shift = self.cum_dataset_length[idx_ds]
            processed_batch = []

            for item in batch_raw:
                # item[0] is the sample index, item[1] is the number of images
                processed_item = (item[0] + shift, item[1], item[2])
                processed_batch.append(processed_item)
            yield processed_batch
        
    def set_epoch(self, epoch):
        """Set epoch for all underlying BatchedRandomSamplers"""
        for sampler in self.src_batch_samplers:
            sampler.set_epoch(epoch)
        # Reset raw_batches after setting new epoch
        self.raw_batches = [list(bs) for bs in self.src_batch_samplers]

    def __len__(self):
        return self.n_total_batch

def round_by(total, multiple, up=False):
    if up:
        total = total + multiple - 1
    return (total // multiple) * multiple