File size: 7,115 Bytes
2568013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import copy
import random
import numpy as np
import torch
from jaxtyping import Float
from torch import Tensor

from ..types import AnyExample, AnyViews


def reflect_extrinsics(
    extrinsics: Float[Tensor, "*batch 4 4"],
) -> Float[Tensor, "*batch 4 4"]:
    reflect = torch.eye(4, dtype=torch.float32, device=extrinsics.device)
    reflect[0, 0] = -1
    return reflect @ extrinsics @ reflect


def reflect_views(views: AnyViews) -> AnyViews:
    if "depth" in views.keys():
        return {
            **views,
            "image": views["image"].flip(-1),
            "extrinsics": reflect_extrinsics(views["extrinsics"]),
            "depth": views["depth"].flip(-1),
        }
    else:
        return {
            **views,
            "image": views["image"].flip(-1),
            "extrinsics": reflect_extrinsics(views["extrinsics"]),
        }


def apply_augmentation_shim(
    example: AnyExample,
    generator: torch.Generator | None = None,
) -> AnyExample:
    """Randomly augment the training images."""
    # Do not augment with 50% chance.
    if torch.rand(tuple(), generator=generator) < 0.5:
        return example
    
    return {
        **example,
        "context": reflect_views(example["context"]),
        "target": reflect_views(example["target"]),
    }

def rotate_90_degrees(
    image: torch.Tensor, depth_map: torch.Tensor | None, extri_opencv: torch.Tensor, intri_opencv: torch.Tensor, clockwise=True
):
    """
    Rotates the input image, depth map, and camera parameters by 90 degrees.

    Applies one of two 90-degree rotations:
    - Clockwise 
    - Counterclockwise (if clockwise=False)

    The extrinsic and intrinsic matrices are adjusted accordingly to maintain
    correct camera geometry.

    Args:
        image (torch.Tensor):
            Input image tensor of shape (C, H, W).
        depth_map (torch.Tensor or None):
            Depth map tensor of shape (H, W), or None if not available.
        extri_opencv (torch.Tensor):
            Extrinsic matrix (3x4) in OpenCV convention.
        intri_opencv (torch.Tensor):
            Intrinsic matrix (3x3).
        clockwise (bool):
            If True, rotates the image 90 degrees clockwise; else 90 degrees counterclockwise.

    Returns:
        tuple:
            (
                rotated_image,
                rotated_depth_map,
                new_extri_opencv,
                new_intri_opencv
            )

            Where each is the updated version after the rotation.
    """
    image_height, image_width = image.shape[-2:]
    
    # Rotate the image and depth map
    rotated_image, rotated_depth_map = rotate_image_and_depth_rot90(image, depth_map, clockwise)
    # Adjust the intrinsic matrix
    new_intri_opencv = adjust_intrinsic_matrix_rot90(intri_opencv, image_width, image_height, clockwise)
    # Adjust the extrinsic matrix
    new_extri_opencv = adjust_extrinsic_matrix_rot90(extri_opencv, clockwise)

    return (
        rotated_image,
        rotated_depth_map,
        new_extri_opencv,
        new_intri_opencv,
    )


def rotate_image_and_depth_rot90(image: torch.Tensor, depth_map: torch.Tensor | None, clockwise: bool):
    """
    Rotates the given image and depth map by 90 degrees (clockwise or counterclockwise).

    Args:
        image (torch.Tensor):
            Input image tensor of shape (C, H, W).
        depth_map (torch.Tensor or None):
            Depth map tensor of shape (H, W), or None if not available.
        clockwise (bool):
            If True, rotate 90 degrees clockwise; else 90 degrees counterclockwise.

    Returns:
        tuple:
            (rotated_image, rotated_depth_map)
    """
    rotated_depth_map = None
    if clockwise:
        rotated_image = torch.rot90(image, k=-1, dims=[-2, -1])
        if depth_map is not None:
            rotated_depth_map = torch.rot90(depth_map, k=-1, dims=[-2, -1])
    else:
        rotated_image = torch.rot90(image, k=1, dims=[-2, -1])
        if depth_map is not None:
            rotated_depth_map = torch.rot90(depth_map, k=1, dims=[-2, -1])
    return rotated_image, rotated_depth_map


def adjust_extrinsic_matrix_rot90(extri_opencv: torch.Tensor, clockwise: bool):
    """
    Adjusts the extrinsic matrix (3x4) for a 90-degree rotation of the image.

    The rotation is in the image plane. This modifies the camera orientation
    accordingly. The function applies either a clockwise or counterclockwise
    90-degree rotation.

    Args:
        extri_opencv (torch.Tensor):
            Extrinsic matrix (3x4) in OpenCV convention.
        clockwise (bool):
            If True, rotate extrinsic for a 90-degree clockwise image rotation;
            otherwise, counterclockwise.

    Returns:
        torch.Tensor:
            A new 3x4 extrinsic matrix after the rotation.
    """
    R = extri_opencv[:3, :3]
    t = extri_opencv[:3, 3]

    if clockwise:
        R_rotation = torch.tensor([
            [0, -1, 0],
            [1,  0, 0],
            [0,  0, 1]
        ], dtype=extri_opencv.dtype, device=extri_opencv.device)
    else:
        R_rotation = torch.tensor([
            [0, 1, 0],
            [-1, 0, 0],
            [0, 0, 1]
        ], dtype=extri_opencv.dtype, device=extri_opencv.device)

    new_R = torch.matmul(R_rotation, R)
    new_t = torch.matmul(R_rotation, t)
    new_extri_opencv = torch.cat((new_R, new_t.reshape(-1, 1)), dim=1)
    new_extri_opencv = torch.cat((new_extri_opencv, 
                                  torch.tensor([[0, 0, 0, 1]], 
                                dtype=extri_opencv.dtype, device=extri_opencv.device)), dim=0)
    return new_extri_opencv


def adjust_intrinsic_matrix_rot90(intri_opencv: torch.Tensor, image_width: int, image_height: int, clockwise: bool):
    """
    Adjusts the intrinsic matrix (3x3) for a 90-degree rotation of the image in the image plane.

    Args:
        intri_opencv (torch.Tensor):
            Intrinsic matrix (3x3).
        image_width (int):
            Original width of the image.
        image_height (int):
            Original height of the image.
        clockwise (bool):
            If True, rotate 90 degrees clockwise; else 90 degrees counterclockwise.

    Returns:
        torch.Tensor:
            A new 3x3 intrinsic matrix after the rotation.
    """
    intri_opencv = copy.deepcopy(intri_opencv)
    intri_opencv[0, :] *= image_width
    intri_opencv[1, :] *= image_height

    fx, fy, cx, cy = (
        intri_opencv[0, 0],
        intri_opencv[1, 1],
        intri_opencv[0, 2],
        intri_opencv[1, 2],
    )

    new_intri_opencv = torch.eye(3, dtype=intri_opencv.dtype, device=intri_opencv.device)
    if clockwise:
        new_intri_opencv[0, 0] = fy
        new_intri_opencv[1, 1] = fx
        new_intri_opencv[0, 2] = image_height - cy
        new_intri_opencv[1, 2] = cx
    else:
        new_intri_opencv[0, 0] = fy
        new_intri_opencv[1, 1] = fx
        new_intri_opencv[0, 2] = cy
        new_intri_opencv[1, 2] = image_width - cx
    
    new_intri_opencv[0, :] /= image_height
    new_intri_opencv[1, :] /= image_width

    return new_intri_opencv