File size: 1,760 Bytes
2568013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
from dataclasses import dataclass

from jaxtyping import Float
from torch import Tensor
import torch
from src.dataset.types import BatchedExample
from src.model.decoder.decoder import DecoderOutput
from src.model.types import Gaussians
from .loss import Loss


@dataclass
class LossMseCfg:
    weight: float
    conf: bool = False
    mask: bool = False
    alpha: bool = False


@dataclass
class LossMseCfgWrapper:
    mse: LossMseCfg


class LossMse(Loss[LossMseCfg, LossMseCfgWrapper]):
    def forward(
        self,
        prediction: DecoderOutput,
        batch: BatchedExample,
        gaussians: Gaussians,
        depth_dict: dict | None,
        global_step: int,
    ) -> Float[Tensor, ""]:
        # Get alpha and valid mask from inputs
        alpha = prediction.alpha
        # valid_mask = torch.ones_like(alpha, device=alpha.device).bool()
        valid_mask = batch['context']['valid_mask']

        # # only for objaverse
        # if batch['context']['valid_mask'].sum() > 0:
        #     valid_mask = batch['context']['valid_mask']

        # Determine which mask to use based on config
        if self.cfg.mask:
            mask = valid_mask
        elif self.cfg.alpha:
            mask = alpha  
        elif self.cfg.conf:
            mask = depth_dict['conf_valid_mask']
        else:
            mask = torch.ones_like(alpha, device=alpha.device).bool()

        # Rearrange and mask predicted and ground truth images
        pred_img = prediction.color.permute(0, 1, 3, 4, 2)[mask] 
        gt_img = ((batch["context"]["image"][:, batch["using_index"]] + 1) / 2).permute(0, 1, 3, 4, 2)[mask]

        delta = pred_img - gt_img

        return self.cfg.weight * torch.nan_to_num((delta**2).mean(), nan=0.0, posinf=0.0, neginf=0.0)