File size: 14,148 Bytes
2568013 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
import torch
import torch.nn as nn
from copy import copy, deepcopy
from src.geometry.ptc_geometry import geotrf, inv, normalize_pointcloud, depthmap_to_pts3d
# from torchmetrics.functional.regression import pearson_corrcoef
# from pytorch3d.loss import chamfer_distance
def get_pred_pts3d(gt, pred, use_pose=False):
if 'depth' in pred and 'pseudo_focal' in pred:
try:
pp = gt['camera_intrinsics'][..., :2, 2]
except KeyError:
pp = None
pts3d = depthmap_to_pts3d(**pred, pp=pp)
elif 'pts3d' in pred:
# pts3d from my camera
pts3d = pred['pts3d']
elif 'pts3d_in_other_view' in pred:
# pts3d from the other camera, already transformed
assert use_pose is True
return pred['pts3d_in_other_view'] # return!
if use_pose:
camera_pose = pred.get('camera_pose')
assert camera_pose is not None
pts3d = geotrf(camera_pose, pts3d)
return pts3d
class LLoss (nn.Module):
""" L-norm loss
"""
def __init__(self, reduction='mean'):
super().__init__()
self.reduction = reduction
def forward(self, a, b):
assert a.shape == b.shape and a.ndim >= 2 and 1 <= a.shape[-1] <= 3, f'Bad shape = {a.shape}'
dist = self.distance(a, b)
assert dist.ndim == a.ndim-1 # one dimension less
if self.reduction == 'none':
return dist
if self.reduction == 'sum':
return dist.sum()
if self.reduction == 'mean':
return dist.mean() if dist.numel() > 0 else dist.new_zeros(())
raise ValueError(f'bad {self.reduction=} mode')
def distance(self, a, b):
raise NotImplementedError()
class L21Loss (LLoss):
""" Euclidean distance between 3d points """
def distance(self, a, b):
return torch.norm(a - b, dim=-1) # normalized L2 distance
class MultiLoss (nn.Module):
""" Easily combinable losses (also keep track of individual loss values):
loss = MyLoss1() + 0.1*MyLoss2()
Usage:
Inherit from this class and override get_name() and compute_loss()
"""
def __init__(self):
super().__init__()
self._alpha = 1
self._loss2 = None
def compute_loss(self, *args, **kwargs):
raise NotImplementedError()
def get_name(self):
raise NotImplementedError()
def __mul__(self, alpha):
assert isinstance(alpha, (int, float))
res = copy(self)
res._alpha = alpha
return res
__rmul__ = __mul__ # same
def __add__(self, loss2):
assert isinstance(loss2, MultiLoss)
res = cur = copy(self)
# find the end of the chain
while cur._loss2 is not None:
cur = cur._loss2
cur._loss2 = loss2
return res
def __repr__(self):
name = self.get_name()
if self._alpha != 1:
name = f'{self._alpha:g}*{name}'
if self._loss2:
name = f'{name} + {self._loss2}'
return name
def forward(self, *args, **kwargs):
loss = self.compute_loss(*args, **kwargs)
if isinstance(loss, tuple):
loss, details = loss
elif loss.ndim == 0:
details = {self.get_name(): float(loss)}
else:
details = {}
loss = loss * self._alpha
if self._loss2:
loss2, details2 = self._loss2(*args, **kwargs)
loss = loss + loss2
details |= details2
return loss, details
class Criterion (nn.Module):
def __init__(self, criterion=None):
super().__init__()
assert isinstance(criterion, LLoss), f'{criterion} is not a proper criterion!'+bb()
self.criterion = copy(criterion)
def get_name(self):
return f'{type(self).__name__}({self.criterion})'
def with_reduction(self, mode):
res = loss = deepcopy(self)
while loss is not None:
assert isinstance(loss, Criterion)
loss.criterion.reduction = 'none' # make it return the loss for each sample
loss = loss._loss2 # we assume loss is a Multiloss
return res
class ConfLoss (MultiLoss):
""" Weighted regression by learned confidence.
Assuming the input pixel_loss is a pixel-level regression loss.
Principle:
high-confidence means high conf = 0.1 ==> conf_loss = x / 10 + alpha*log(10)
low confidence means low conf = 10 ==> conf_loss = x * 10 - alpha*log(10)
alpha: hyperparameter
"""
def __init__(self, pixel_loss, alpha=1):
super().__init__()
assert alpha > 0
self.alpha = alpha
self.pixel_loss = pixel_loss.with_reduction('none')
def get_name(self):
return f'ConfLoss({self.pixel_loss})'
def get_conf_log(self, x):
return x, torch.log(x)
def compute_loss(self, gt1, gt2, pred1, pred2, **kw):
# compute per-pixel loss
((loss1, msk1), (loss2, msk2)), details = self.pixel_loss(gt1, gt2, pred1, pred2, **kw)
if loss1.numel() == 0:
print('NO VALID POINTS in img1', force=True)
if loss2.numel() == 0:
print('NO VALID POINTS in img2', force=True)
# weight by confidence
conf1, log_conf1 = self.get_conf_log(pred1['conf'][msk1])
conf2, log_conf2 = self.get_conf_log(pred2['conf'][msk2])
conf_loss1 = loss1 * conf1 - self.alpha * log_conf1
conf_loss2 = loss2 * conf2 - self.alpha * log_conf2
# average + nan protection (in case of no valid pixels at all)
conf_loss1 = conf_loss1.mean() if conf_loss1.numel() > 0 else 0
conf_loss2 = conf_loss2.mean() if conf_loss2.numel() > 0 else 0
return conf_loss1 + conf_loss2, dict(conf_loss_1=float(conf_loss1), conf_loss2=float(conf_loss2), **details)
class Regr3D(nn.Module):
""" Ensure that all 3D points are correct.
Asymmetric loss: view1 is supposed to be the anchor.
P1 = RT1 @ D1
P2 = RT2 @ D2
loss1 = (I @ pred_D1) - (RT1^-1 @ RT1 @ D1)
loss2 = (RT21 @ pred_D2) - (RT1^-1 @ P2)
= (RT21 @ pred_D2) - (RT1^-1 @ RT2 @ D2)
"""
def __init__(self, norm_mode='avg_dis', alpha=0.2, gt_scale=False):
super().__init__()
self.norm_mode = norm_mode
self.alpha = alpha
self.gt_scale = gt_scale
def get_conf_log(self, x):
return x, torch.log(x)
def forward(self, gt_pts1, gt_pts2, pr_pts1, pr_pts2, conf1=None, conf2=None, dist_clip=None, disable_view1=False):
valid1 = valid2 = torch.ones_like(conf1, dtype=torch.bool)
if dist_clip is not None:
# points that are too far-away == invalid
dis1 = gt_pts1.norm(dim=-1) # (B, H, W)
dis2 = gt_pts2.norm(dim=-1) # (B, H, W)
valid1 = (dis1 <= dist_clip)
valid2 = (dis2 <= dist_clip)
else:
dis1 = gt_pts1.norm(dim=-1) # (B, H, W)
dis2 = gt_pts2.norm(dim=-1) # (B, H, W)
# only keep the points norm whithin the range of 1% to 99% of each batch
# Flatten along the H and W dimensions
dis1_flat = dis1.view(dis1.shape[0], -1)
dis2_flat = dis2.view(dis2.shape[0], -1)
# Compute the 0.1% and 99.9% quantiles for each batch
# quantiles_1 = torch.quantile(dis1_flat, torch.tensor([0.01, 0.99]).to(dis1_flat.device), dim=1)
# quantiles_2 = torch.quantile(dis2_flat, torch.tensor([0.01, 0.99]).to(dis2_flat.device), dim=1)
quantiles_1 = torch.quantile(dis1_flat, torch.tensor([0.002, 0.998]).to(dis1_flat.device), dim=1)
quantiles_2 = torch.quantile(dis2_flat, torch.tensor([0.002, 0.998]).to(dis2_flat.device), dim=1)
# Create masks based on the quantiles
valid1 = (dis1 >= quantiles_1[0].view(-1, 1, 1)) & (dis1 <= quantiles_1[1].view(-1, 1, 1))
valid2 = (dis2 >= quantiles_2[0].view(-1, 1, 1)) & (dis2 <= quantiles_2[1].view(-1, 1, 1))
# set min confidence to 3
valid1 = valid1 & (conf1 >= 3)
valid2 = valid2 & (conf2 >= 3)
# normalize 3d points
if self.norm_mode:
pr_pts1, pr_pts2 = normalize_pointcloud(pr_pts1, pr_pts2, self.norm_mode, valid1, valid2)
if self.norm_mode and not self.gt_scale:
gt_pts1, gt_pts2 = normalize_pointcloud(gt_pts1, gt_pts2, self.norm_mode, valid1, valid2)
loss1 = torch.norm(pr_pts1 - gt_pts1, dim=-1)
loss2 = torch.norm(pr_pts2 - gt_pts2, dim=-1)
# loss1 = (pr_pts1[..., -1] - gt_pts1[..., -1]).abs()
# loss2 = (pr_pts2[..., -1] - gt_pts2[..., -1]).abs()
loss1, loss2 = loss1[valid1], loss2[valid2]
if disable_view1:
return loss2.mean()
return loss1.mean() + loss2.mean()
# conf1, conf2 = conf1[valid1], conf2[valid2]
# conf1, conf2 = conf1.softmax(dim=-1), conf2.softmax(dim=-1)
# loss1 = (loss1 * conf1).sum()
# loss2 = (loss2 * conf2).sum()
# return loss1 + loss2
#
# # weight by confidence
# conf1, log_conf1 = self.get_conf_log(conf1[valid1])
# conf2, log_conf2 = self.get_conf_log(conf2[valid2])
# conf_loss1 = loss1 * conf1 - self.alpha * log_conf1
# conf_loss2 = loss2 * conf2 - self.alpha * log_conf2
#
# # average + nan protection (in case of no valid pixels at all)
# conf_loss1 = conf_loss1.mean() if conf_loss1.numel() > 0 else 0
# conf_loss2 = conf_loss2.mean() if conf_loss2.numel() > 0 else 0
#
# return conf_loss1 + conf_loss2
# def forward(self, gt_pts1, gt_pts2, pr_pts1, pr_pts2, conf1=None, conf2=None, dist_clip=None, disable_view1=False):
# # valid1 = valid2 = torch.ones_like(conf1, dtype=torch.bool)
# if dist_clip is not None:
# # points that are too far-away == invalid
# dis1 = gt_pts1.norm(dim=-1) # (B, H, W)
# dis2 = gt_pts2.norm(dim=-1) # (B, H, W)
# valid1 = (dis1 <= dist_clip)
# valid2 = (dis2 <= dist_clip)
# else:
# dis1 = gt_pts1.norm(dim=-1) # (B, H, W)
# dis2 = gt_pts2.norm(dim=-1) # (B, H, W)
#
# # only keep the points norm whithin the range of 1% to 99% of each batch
# # Flatten along the H and W dimensions
# dis1_flat = dis1.view(dis1.shape[0], -1)
# dis2_flat = dis2.view(dis2.shape[0], -1)
#
# # Compute the 0.1% and 99.9% quantiles for each batch
# quantiles_1 = torch.quantile(dis1_flat, torch.tensor([0.1, 0.9]).to(dis1_flat.device), dim=1)
# quantiles_2 = torch.quantile(dis2_flat, torch.tensor([0.1, 0.9]).to(dis2_flat.device), dim=1)
# # quantiles_1 = torch.quantile(dis1_flat, torch.tensor([0.002, 0.998]).to(dis1_flat.device), dim=1)
# # quantiles_2 = torch.quantile(dis2_flat, torch.tensor([0.002, 0.998]).to(dis2_flat.device), dim=1)
#
# # Create masks based on the quantiles
# valid1 = (dis1 >= quantiles_1[0].view(-1, 1, 1)) & (dis1 <= quantiles_1[1].view(-1, 1, 1))
# valid2 = (dis2 >= quantiles_2[0].view(-1, 1, 1)) & (dis2 <= quantiles_2[1].view(-1, 1, 1))
#
# # set min opacity to 3
# valid1 = valid1 & (conf1 >= 0.2)
# valid2 = valid2 & (conf2 >= 0.2)
#
# # # normalize 3d points
# # if self.norm_mode:
# # pr_pts1, pr_pts2 = normalize_pointcloud(pr_pts1, pr_pts2, self.norm_mode, valid1, valid2)
# # if self.norm_mode and not self.gt_scale:
# # gt_pts1, gt_pts2 = normalize_pointcloud(gt_pts1, gt_pts2, self.norm_mode, valid1, valid2)
#
# # L1 loss
# # loss1 = (pr_pts1[..., -1] - gt_pts1[..., -1]).abs()
# # loss2 = (pr_pts2[..., -1] - gt_pts2[..., -1]).abs()
#
# # L2 loss
# loss1 = torch.norm(pr_pts1 - gt_pts1, dim=-1)
# loss2 = torch.norm(pr_pts2 - gt_pts2, dim=-1)
# loss1, loss2 = loss1[valid1], loss2[valid2]
#
# # Pearson correlation coefficient loss
# # pr_pts1, pr_pts2 = pr_pts1[valid1], pr_pts2[valid2]
# # gt_pts1, gt_pts2 = gt_pts1[valid1], gt_pts2[valid2]
# # loss1 = 1 - pearson_corrcoef(pr_pts1.view(-1, 3), gt_pts1.view(-1, 3))
# # loss2 = 1 - pearson_corrcoef(pr_pts2.view(-1, 3), gt_pts2.view(-1, 3))
#
# # # Chamfer distance loss
# # pr_pts = torch.cat([pr_pts1.flatten(1, 2), pr_pts2.flatten(1, 2)], dim=1)
# # gt_pts = torch.cat([gt_pts1.flatten(1, 2), gt_pts2.flatten(1, 2)], dim=1)
# # valid_mask = torch.cat([valid1.flatten(1, 2), valid2.flatten(1, 2)], dim=1)
# # nan_pts_pr, nnz = invalid_to_zeros(pr_pts, valid_mask, ndim=3)
# # nan_pts_gt, nnz = invalid_to_zeros(gt_pts, valid_mask, ndim=3)
# #
# # loss, _ = chamfer_distance(nan_pts_pr, nan_pts_gt, batch_reduction=None, point_reduction=None)
# # loss1, loss2 = loss[0], loss[1]
# # return loss1.sum() / valid_mask.sum()
#
# if disable_view1:
# return loss2.mean()
# return loss1.mean() + loss2.mean()
#
# # conf1, conf2 = conf1[valid1], conf2[valid2]
# # conf1, conf2 = conf1.softmax(dim=-1), conf2.softmax(dim=-1)
# # loss1 = (loss1 * conf1).sum()
# # loss2 = (loss2 * conf2).sum()
# # return loss1 + loss2
# #
# # # weight by confidence
# # conf1, log_conf1 = self.get_conf_log(conf1[valid1])
# # conf2, log_conf2 = self.get_conf_log(conf2[valid2])
# # conf_loss1 = loss1 * conf1 - self.alpha * log_conf1
# # conf_loss2 = loss2 * conf2 - self.alpha * log_conf2
# #
# # # average + nan protection (in case of no valid pixels at all)
# # conf_loss1 = conf_loss1.mean() if conf_loss1.numel() > 0 else 0
# # conf_loss2 = conf_loss2.mean() if conf_loss2.numel() > 0 else 0
# #
# # return conf_loss1 + conf_loss2
|