File size: 13,563 Bytes
2568013 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 |
# Copyright 2020 by Gongfan Fang, Zhejiang University.
# All rights reserved.
# Modified by Botao Ye from https://github.com/VainF/pytorch-msssim/blob/master/pytorch_msssim/ssim.py.
import warnings
from typing import List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
from torch import Tensor
def _fspecial_gauss_1d(size: int, sigma: float) -> Tensor:
r"""Create 1-D gauss kernel
Args:
size (int): the size of gauss kernel
sigma (float): sigma of normal distribution
Returns:
torch.Tensor: 1D kernel (1 x 1 x size)
"""
coords = torch.arange(size, dtype=torch.float)
coords -= size // 2
g = torch.exp(-(coords ** 2) / (2 * sigma ** 2))
g /= g.sum()
return g.unsqueeze(0).unsqueeze(0)
def gaussian_filter(input: Tensor, win: Tensor) -> Tensor:
r""" Blur input with 1-D kernel
Args:
input (torch.Tensor): a batch of tensors to be blurred
window (torch.Tensor): 1-D gauss kernel
Returns:
torch.Tensor: blurred tensors
"""
assert all([ws == 1 for ws in win.shape[1:-1]]), win.shape
if len(input.shape) == 4:
conv = F.conv2d
elif len(input.shape) == 5:
conv = F.conv3d
else:
raise NotImplementedError(input.shape)
C = input.shape[1]
out = input
for i, s in enumerate(input.shape[2:]):
if s >= win.shape[-1]:
out = conv(out, weight=win.transpose(2 + i, -1), stride=1, padding=0, groups=C)
else:
warnings.warn(
f"Skipping Gaussian Smoothing at dimension 2+{i} for input: {input.shape} and win size: {win.shape[-1]}"
)
return out
def _ssim(
X: Tensor,
Y: Tensor,
data_range: float,
win: Tensor,
size_average: bool = True,
K: Union[Tuple[float, float], List[float]] = (0.01, 0.03),
retrun_seprate: bool = False,
) -> Tuple[Tensor, Tensor, Tensor | None, Tensor | None, Tensor | None]:
r""" Calculate ssim index for X and Y
Args:
X (torch.Tensor): images
Y (torch.Tensor): images
data_range (float or int): value range of input images. (usually 1.0 or 255)
win (torch.Tensor): 1-D gauss kernel
size_average (bool, optional): if size_average=True, ssim of all images will be averaged as a scalar
retrun_seprate (bool, optional): if True, return brightness, contrast, and structure similarity maps as well
Returns:
Tuple[torch.Tensor, torch.Tensor]: ssim results.
"""
K1, K2 = K
# batch, channel, [depth,] height, width = X.shape
compensation = 1.0
C1 = (K1 * data_range) ** 2
C2 = (K2 * data_range) ** 2
win = win.to(X.device, dtype=X.dtype)
mu1 = gaussian_filter(X, win)
mu2 = gaussian_filter(Y, win)
mu1_sq = mu1.pow(2)
mu2_sq = mu2.pow(2)
mu1_mu2 = mu1 * mu2
sigma1_sq = compensation * (gaussian_filter(X * X, win) - mu1_sq)
sigma2_sq = compensation * (gaussian_filter(Y * Y, win) - mu2_sq)
sigma12 = compensation * (gaussian_filter(X * Y, win) - mu1_mu2)
cs_map = (2 * sigma12 + C2) / (sigma1_sq + sigma2_sq + C2) # set alpha=beta=gamma=1
ssim_map = ((2 * mu1_mu2 + C1) / (mu1_sq + mu2_sq + C1)) * cs_map
ssim_per_channel = torch.flatten(ssim_map, 2).mean(-1)
cs = torch.flatten(cs_map, 2).mean(-1)
brightness = contrast = structure = torch.zeros_like(ssim_per_channel)
if retrun_seprate:
epsilon = torch.finfo(torch.float32).eps**2
sigma1_sq = sigma1_sq.clamp(min=epsilon)
sigma2_sq = sigma2_sq.clamp(min=epsilon)
sigma12 = torch.sign(sigma12) * torch.minimum(
torch.sqrt(sigma1_sq * sigma2_sq), torch.abs(sigma12))
C3 = C2 / 2
sigma1_sigma2 = torch.sqrt(sigma1_sq) * torch.sqrt(sigma2_sq)
brightness_map = (2 * mu1_mu2 + C1) / (mu1_sq + mu2_sq + C1)
contrast_map = (2 * sigma1_sigma2 + C2) / (sigma1_sq + sigma2_sq + C2)
structure_map = (sigma12 + C3) / (sigma1_sigma2 + C3)
contrast_map = contrast_map.clamp(max=0.98)
structure_map = structure_map.clamp(max=0.98)
brightness = brightness_map.flatten(2).mean(-1)
contrast = contrast_map.flatten(2).mean(-1)
structure = structure_map.flatten(2).mean(-1)
return ssim_per_channel, cs, brightness, contrast, structure
def ssim(
X: Tensor,
Y: Tensor,
data_range: float = 255,
size_average: bool = True,
win_size: int = 11,
win_sigma: float = 1.5,
win: Optional[Tensor] = None,
K: Union[Tuple[float, float], List[float]] = (0.01, 0.03),
nonnegative_ssim: bool = False,
retrun_seprate: bool = False,
) -> Tuple[Tensor, Tensor, Tensor, Tensor]:
r""" interface of ssim
Args:
X (torch.Tensor): a batch of images, (N,C,H,W)
Y (torch.Tensor): a batch of images, (N,C,H,W)
data_range (float or int, optional): value range of input images. (usually 1.0 or 255)
size_average (bool, optional): if size_average=True, ssim of all images will be averaged as a scalar
win_size: (int, optional): the size of gauss kernel
win_sigma: (float, optional): sigma of normal distribution
win (torch.Tensor, optional): 1-D gauss kernel. if None, a new kernel will be created according to win_size and win_sigma
K (list or tuple, optional): scalar constants (K1, K2). Try a larger K2 constant (e.g. 0.4) if you get a negative or NaN results.
nonnegative_ssim (bool, optional): force the ssim response to be nonnegative with relu
retrun_seprate (bool, optional): if True, return brightness, contrast, and structure similarity maps as well
Returns:
torch.Tensor: ssim results
"""
if not X.shape == Y.shape:
raise ValueError(f"Input images should have the same dimensions, but got {X.shape} and {Y.shape}.")
for d in range(len(X.shape) - 1, 1, -1):
X = X.squeeze(dim=d)
Y = Y.squeeze(dim=d)
if len(X.shape) not in (4, 5):
raise ValueError(f"Input images should be 4-d or 5-d tensors, but got {X.shape}")
#if not X.type() == Y.type():
# raise ValueError(f"Input images should have the same dtype, but got {X.type()} and {Y.type()}.")
if win is not None: # set win_size
win_size = win.shape[-1]
if not (win_size % 2 == 1):
raise ValueError("Window size should be odd.")
if win is None:
win = _fspecial_gauss_1d(win_size, win_sigma)
win = win.repeat([X.shape[1]] + [1] * (len(X.shape) - 1))
ssim_per_channel, cs, brightness, contrast, structure \
= _ssim(X, Y, data_range=data_range, win=win, size_average=False, K=K, retrun_seprate=retrun_seprate)
if nonnegative_ssim:
ssim_per_channel = torch.relu(ssim_per_channel)
if size_average:
return ssim_per_channel.mean(), brightness.mean(), contrast.mean(), structure.mean()
else:
return ssim_per_channel.mean(1), brightness.mean(1), contrast.mean(1), structure.mean(1)
def ms_ssim(
X: Tensor,
Y: Tensor,
data_range: float = 255,
size_average: bool = True,
win_size: int = 11,
win_sigma: float = 1.5,
win: Optional[Tensor] = None,
weights: Optional[List[float]] = None,
K: Union[Tuple[float, float], List[float]] = (0.01, 0.03)
) -> Tensor:
r""" interface of ms-ssim
Args:
X (torch.Tensor): a batch of images, (N,C,[T,]H,W)
Y (torch.Tensor): a batch of images, (N,C,[T,]H,W)
data_range (float or int, optional): value range of input images. (usually 1.0 or 255)
size_average (bool, optional): if size_average=True, ssim of all images will be averaged as a scalar
win_size: (int, optional): the size of gauss kernel
win_sigma: (float, optional): sigma of normal distribution
win (torch.Tensor, optional): 1-D gauss kernel. if None, a new kernel will be created according to win_size and win_sigma
weights (list, optional): weights for different levels
K (list or tuple, optional): scalar constants (K1, K2). Try a larger K2 constant (e.g. 0.4) if you get a negative or NaN results.
Returns:
torch.Tensor: ms-ssim results
"""
if not X.shape == Y.shape:
raise ValueError(f"Input images should have the same dimensions, but got {X.shape} and {Y.shape}.")
for d in range(len(X.shape) - 1, 1, -1):
X = X.squeeze(dim=d)
Y = Y.squeeze(dim=d)
#if not X.type() == Y.type():
# raise ValueError(f"Input images should have the same dtype, but got {X.type()} and {Y.type()}.")
if len(X.shape) == 4:
avg_pool = F.avg_pool2d
elif len(X.shape) == 5:
avg_pool = F.avg_pool3d
else:
raise ValueError(f"Input images should be 4-d or 5-d tensors, but got {X.shape}")
if win is not None: # set win_size
win_size = win.shape[-1]
if not (win_size % 2 == 1):
raise ValueError("Window size should be odd.")
smaller_side = min(X.shape[-2:])
assert smaller_side > (win_size - 1) * (
2 ** 4
), "Image size should be larger than %d due to the 4 downsamplings in ms-ssim" % ((win_size - 1) * (2 ** 4))
if weights is None:
weights = [0.0448, 0.2856, 0.3001, 0.2363, 0.1333]
weights_tensor = X.new_tensor(weights)
if win is None:
win = _fspecial_gauss_1d(win_size, win_sigma)
win = win.repeat([X.shape[1]] + [1] * (len(X.shape) - 1))
levels = weights_tensor.shape[0]
mcs = []
for i in range(levels):
ssim_per_channel, cs = _ssim(X, Y, win=win, data_range=data_range, size_average=False, K=K)
if i < levels - 1:
mcs.append(torch.relu(cs))
padding = [s % 2 for s in X.shape[2:]]
X = avg_pool(X, kernel_size=2, padding=padding)
Y = avg_pool(Y, kernel_size=2, padding=padding)
ssim_per_channel = torch.relu(ssim_per_channel) # type: ignore # (batch, channel)
mcs_and_ssim = torch.stack(mcs + [ssim_per_channel], dim=0) # (level, batch, channel)
ms_ssim_val = torch.prod(mcs_and_ssim ** weights_tensor.view(-1, 1, 1), dim=0)
if size_average:
return ms_ssim_val.mean()
else:
return ms_ssim_val.mean(1)
class SSIM(torch.nn.Module):
def __init__(
self,
data_range: float = 255,
size_average: bool = True,
win_size: int = 11,
win_sigma: float = 1.5,
channel: int = 3,
spatial_dims: int = 2,
K: Union[Tuple[float, float], List[float]] = (0.01, 0.03),
nonnegative_ssim: bool = False,
) -> None:
r""" class for ssim
Args:
data_range (float or int, optional): value range of input images. (usually 1.0 or 255)
size_average (bool, optional): if size_average=True, ssim of all images will be averaged as a scalar
win_size: (int, optional): the size of gauss kernel
win_sigma: (float, optional): sigma of normal distribution
channel (int, optional): input channels (default: 3)
K (list or tuple, optional): scalar constants (K1, K2). Try a larger K2 constant (e.g. 0.4) if you get a negative or NaN results.
nonnegative_ssim (bool, optional): force the ssim response to be nonnegative with relu.
"""
super(SSIM, self).__init__()
self.win_size = win_size
self.win = _fspecial_gauss_1d(win_size, win_sigma).repeat([channel, 1] + [1] * spatial_dims)
self.size_average = size_average
self.data_range = data_range
self.K = K
self.nonnegative_ssim = nonnegative_ssim
def forward(self, X: Tensor, Y: Tensor) -> Tensor:
return ssim(
X,
Y,
data_range=self.data_range,
size_average=self.size_average,
win=self.win,
K=self.K,
nonnegative_ssim=self.nonnegative_ssim,
)
class MS_SSIM(torch.nn.Module):
def __init__(
self,
data_range: float = 255,
size_average: bool = True,
win_size: int = 11,
win_sigma: float = 1.5,
channel: int = 3,
spatial_dims: int = 2,
weights: Optional[List[float]] = None,
K: Union[Tuple[float, float], List[float]] = (0.01, 0.03),
) -> None:
r""" class for ms-ssim
Args:
data_range (float or int, optional): value range of input images. (usually 1.0 or 255)
size_average (bool, optional): if size_average=True, ssim of all images will be averaged as a scalar
win_size: (int, optional): the size of gauss kernel
win_sigma: (float, optional): sigma of normal distribution
channel (int, optional): input channels (default: 3)
weights (list, optional): weights for different levels
K (list or tuple, optional): scalar constants (K1, K2). Try a larger K2 constant (e.g. 0.4) if you get a negative or NaN results.
"""
super(MS_SSIM, self).__init__()
self.win_size = win_size
self.win = _fspecial_gauss_1d(win_size, win_sigma).repeat([channel, 1] + [1] * spatial_dims)
self.size_average = size_average
self.data_range = data_range
self.weights = weights
self.K = K
def forward(self, X: Tensor, Y: Tensor) -> Tensor:
return ms_ssim(
X,
Y,
data_range=self.data_range,
size_average=self.size_average,
win=self.win,
weights=self.weights,
K=self.K,
)
|