File size: 5,012 Bytes
2568013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import os
from pathlib import Path

import hydra
import torch
import wandb
import random
from colorama import Fore
from jaxtyping import install_import_hook
from lightning.pytorch import Trainer
from lightning.pytorch.callbacks import LearningRateMonitor, ModelCheckpoint
from lightning.pytorch.loggers.wandb import WandbLogger
from lightning.pytorch.plugins.environments import SLURMEnvironment
from lightning.pytorch.strategies import DeepSpeedStrategy
from omegaconf import DictConfig, OmegaConf
from hydra.core.hydra_config import HydraConfig

import sys
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from src.model.model import get_model
from src.misc.weight_modify import checkpoint_filter_fn

import warnings
warnings.filterwarnings("ignore")

# Configure beartype and jaxtyping.
with install_import_hook(
    ("src",),
    ("beartype", "beartype"),
):
    from src.config import load_typed_root_config
    from src.dataset.data_module import DataModule
    from src.global_cfg import set_cfg
    from src.loss import get_losses
    from src.misc.LocalLogger import LocalLogger
    from src.misc.step_tracker import StepTracker
    from src.misc.wandb_tools import update_checkpoint_path
    from src.model.decoder import get_decoder
    from src.model.encoder import get_encoder
    from src.model.model_wrapper import ModelWrapper


def cyan(text: str) -> str:
    return f"{Fore.CYAN}{text}{Fore.RESET}"


@hydra.main(
    version_base=None,
    config_path="../config",
    config_name="main",
)
def train(cfg_dict: DictConfig):
    cfg = load_typed_root_config(cfg_dict)
    set_cfg(cfg_dict)
    
    # Set up the output directory.
    output_dir = Path(
        hydra.core.hydra_config.HydraConfig.get()["runtime"]["output_dir"]
    )
    output_dir.mkdir(parents=True, exist_ok=True)
    print(cyan(f"Saving outputs to {output_dir}."))
    
    cfg.train.output_path = output_dir
    
    # Set up logging with wandb.
    callbacks = []
    if cfg_dict.wandb.mode != "disabled":
        logger = WandbLogger(
            project=cfg_dict.wandb.project,
            mode=cfg_dict.wandb.mode,
            name=f"{cfg_dict.wandb.name} ({output_dir.parent.name}/{output_dir.name})",
            tags=cfg_dict.wandb.get("tags", None),
            log_model=False,
            save_dir=output_dir,
            config=OmegaConf.to_container(cfg_dict),
        )
        callbacks.append(LearningRateMonitor("step", True))
        
        # On rank != 0, wandb.run is None.
        if wandb.run is not None:
            wandb.run.log_code("src")
    else:
        logger = LocalLogger()
    
    # Set up checkpointing.
    callbacks.append(
        ModelCheckpoint(
            output_dir / "checkpoints",
            every_n_train_steps=cfg.checkpointing.every_n_train_steps,
            save_top_k=cfg.checkpointing.save_top_k,
            save_weights_only=cfg.checkpointing.save_weights_only,
            monitor="info/global_step",
            mode="max",
        )
    )
    callbacks[-1].CHECKPOINT_EQUALS_CHAR = '_'
    
    # Prepare the checkpoint for loading.
    checkpoint_path = update_checkpoint_path(cfg.checkpointing.load, cfg.wandb)
    
    # This allows the current step to be shared with the data loader processes.
    step_tracker = StepTracker()
    
    trainer = Trainer(
        max_epochs=-1,
        num_nodes=cfg.trainer.num_nodes,
        # num_sanity_val_steps=0,
        accelerator="gpu",
        logger=logger,
        devices="auto",
        strategy=(
            "ddp_find_unused_parameters_true"
            if torch.cuda.device_count() > 1
            else "auto"
        ),
        # strategy="deepspeed_stage_1",
        callbacks=callbacks,
        val_check_interval=cfg.trainer.val_check_interval,
        check_val_every_n_epoch=None,
        enable_progress_bar=False,
        gradient_clip_val=cfg.trainer.gradient_clip_val,
        max_steps=cfg.trainer.max_steps,
        precision=cfg.trainer.precision,
        accumulate_grad_batches=cfg.trainer.accumulate_grad_batches,
        # plugins=[SLURMEnvironment(requeue_signal=signal.SIGUSR1)],  # Uncomment for SLURM auto resubmission.
        inference_mode=False if (cfg.mode == "test" and cfg.test.align_pose) else True,
    )
    torch.manual_seed(cfg_dict.seed + trainer.global_rank)
    
    model = get_model(cfg.model.encoder, cfg.model.decoder)
    
    model_wrapper = ModelWrapper(
        cfg.optimizer,
        cfg.test,
        cfg.train,
        model,
        get_losses(cfg.loss),
        step_tracker
    )
    data_module = DataModule(
        cfg.dataset,
        cfg.data_loader,
        step_tracker,
        global_rank=trainer.global_rank,
    )
    
    if cfg.mode == "train":
        trainer.fit(model_wrapper, datamodule=data_module, ckpt_path=checkpoint_path)
    else:
        trainer.test(
            model_wrapper,
            datamodule=data_module,
            ckpt_path=checkpoint_path,
        )


if __name__ == "__main__":
    train()