File size: 7,052 Bytes
2568013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import io
import os
from pathlib import Path
from typing import Union

import cv2
import numpy as np
import skvideo
import torch
import torchvision.transforms as tf
from einops import rearrange, repeat
from jaxtyping import Float, UInt8

from matplotlib import pyplot as plt
from matplotlib.figure import Figure
from PIL import Image
from torch import Tensor

FloatImage = Union[
    Float[Tensor, "height width"],
    Float[Tensor, "channel height width"],
    Float[Tensor, "batch channel height width"],
]


def fig_to_image(
    fig: Figure,
    dpi: int = 100,
    device: torch.device = torch.device("cpu"),
) -> Float[Tensor, "3 height width"]:
    buffer = io.BytesIO()
    fig.savefig(buffer, format="raw", dpi=dpi)
    buffer.seek(0)
    data = np.frombuffer(buffer.getvalue(), dtype=np.uint8)
    h = int(fig.bbox.bounds[3])
    w = int(fig.bbox.bounds[2])
    data = rearrange(data, "(h w c) -> c h w", h=h, w=w, c=4)
    buffer.close()
    return (torch.tensor(data, device=device, dtype=torch.float32) / 255)[:3]


def prep_image(image: FloatImage) -> UInt8[np.ndarray, "height width channel"]:
    # Handle batched images.
    if image.ndim == 4:
        image = rearrange(image, "b c h w -> c h (b w)")

    # Handle single-channel images.
    if image.ndim == 2:
        image = rearrange(image, "h w -> () h w")

    # Ensure that there are 3 or 4 channels.
    channel, _, _ = image.shape
    if channel == 1:
        image = repeat(image, "() h w -> c h w", c=3)
    assert image.shape[0] in (3, 4)

    image = (image.detach().clip(min=0, max=1) * 255).type(torch.uint8)
    return rearrange(image, "c h w -> h w c").cpu().numpy()


def save_image(
    image: FloatImage,
    path: Union[Path, str],
) -> None:
    """Save an image. Assumed to be in range 0-1."""

    # Create the parent directory if it doesn't already exist.
    path = Path(path)
    path.parent.mkdir(exist_ok=True, parents=True)

    # Save the image.
    Image.fromarray(prep_image(image)).save(path)


def load_image(
    path: Union[Path, str],
) -> Float[Tensor, "3 height width"]:
    return tf.ToTensor()(Image.open(path))[:3]


def save_video(tensor, save_path, fps=10):
    """
    Save a tensor of shape (N, C, H, W) as a video file using imageio.
    Args:
        tensor: Tensor of shape (N, C, H, W) in range [0, 1]
        save_path: Path to save the video file
        fps: Frames per second for the video
    """
    # Convert tensor to numpy array and adjust dimensions
    video = tensor.cpu().detach().numpy()  # (N, C, H, W)
    video = np.transpose(video, (0, 2, 3, 1))  # (N, H, W, C)

    # Scale to [0, 255] and convert to uint8
    video = (video * 255).astype(np.uint8)

    # Ensure the directory exists
    import os

    os.makedirs(os.path.dirname(save_path), exist_ok=True)

    # Use imageio to write video (handles codec compatibility automatically)
    import imageio

    writer = imageio.get_writer(save_path, fps=fps)

    for frame in video:
        writer.append_data(frame)

    writer.close()


def save_interpolated_video(
    pred_extrinsics, pred_intrinsics, b, h, w, gaussians, save_path, decoder_func, t=10
):
    # Interpolate between neighboring frames
    # t: Number of extra views to interpolate between each pair
    interpolated_extrinsics = []
    interpolated_intrinsics = []

    # For each pair of neighboring frame
    for i in range(pred_extrinsics.shape[1] - 1):
        # Add the current frame
        interpolated_extrinsics.append(pred_extrinsics[:, i : i + 1])
        interpolated_intrinsics.append(pred_intrinsics[:, i : i + 1])

        # Interpolate between current and next frame
        for j in range(1, t + 1):
            alpha = j / (t + 1)

            # Interpolate extrinsics
            start_extrinsic = pred_extrinsics[:, i]
            end_extrinsic = pred_extrinsics[:, i + 1]

            # Separate rotation and translation
            start_rot = start_extrinsic[:, :3, :3]
            end_rot = end_extrinsic[:, :3, :3]
            start_trans = start_extrinsic[:, :3, 3]
            end_trans = end_extrinsic[:, :3, 3]

            # Interpolate translation (linear)
            interp_trans = (1 - alpha) * start_trans + alpha * end_trans

            # Interpolate rotation (spherical)
            start_rot_flat = start_rot.reshape(b, 9)
            end_rot_flat = end_rot.reshape(b, 9)
            interp_rot_flat = (1 - alpha) * start_rot_flat + alpha * end_rot_flat
            interp_rot = interp_rot_flat.reshape(b, 3, 3)

            # Normalize rotation matrix to ensure it's orthogonal
            u, _, v = torch.svd(interp_rot)
            interp_rot = torch.bmm(u, v.transpose(1, 2))

            # Combine interpolated rotation and translation
            interp_extrinsic = (
                torch.eye(4, device=pred_extrinsics.device).unsqueeze(0).repeat(b, 1, 1)
            )
            interp_extrinsic[:, :3, :3] = interp_rot
            interp_extrinsic[:, :3, 3] = interp_trans

            # Interpolate intrinsics (linear)
            start_intrinsic = pred_intrinsics[:, i]
            end_intrinsic = pred_intrinsics[:, i + 1]
            interp_intrinsic = (1 - alpha) * start_intrinsic + alpha * end_intrinsic

            # Add interpolated frame
            interpolated_extrinsics.append(interp_extrinsic.unsqueeze(1))
            interpolated_intrinsics.append(interp_intrinsic.unsqueeze(1))

    # Concatenate all frames
    pred_all_extrinsic = torch.cat(interpolated_extrinsics, dim=1)
    pred_all_intrinsic = torch.cat(interpolated_intrinsics, dim=1)

    # Add the last frame
    interpolated_extrinsics.append(pred_all_extrinsic[:, -1:])
    interpolated_intrinsics.append(pred_all_intrinsic[:, -1:])

    # Update K to reflect the new number of frames
    num_frames = pred_all_extrinsic.shape[1]

    # Render interpolated views
    interpolated_output = decoder_func.forward(
        gaussians,
        pred_all_extrinsic,
        pred_all_intrinsic.float(),
        torch.ones(1, num_frames, device=pred_all_extrinsic.device) * 0.1,
        torch.ones(1, num_frames, device=pred_all_extrinsic.device) * 100,
        (h, w),
    )

    # Convert to video format
    video = interpolated_output.color[0].clip(min=0, max=1)
    depth = interpolated_output.depth[0]
    
    # Normalize depth for visualization
    # to avoid `quantile() input tensor is too large`
    num_views = pred_extrinsics.shape[1] 
    depth_norm = (depth - depth[::num_views].quantile(0.01)) / (
        depth[::num_views].quantile(0.99) - depth[::num_views].quantile(0.01)
    )
    depth_norm = plt.cm.turbo(depth_norm.cpu().numpy())
    depth_colored = (
        torch.from_numpy(depth_norm[..., :3]).permute(0, 3, 1, 2).to(depth.device)
    )
    depth_colored = depth_colored.clip(min=0, max=1)

    # Save depth video
    save_video(depth_colored, os.path.join(save_path, f"depth.mp4"))
    # Save video
    save_video(video, os.path.join(save_path, f"rgb.mp4"))

    return os.path.join(save_path, f"rgb.mp4"), os.path.join(save_path, f"depth.mp4")